【題目】將圓上每一點的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>
,得曲線
.
(1)求出的參數(shù)方程;
(2)以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,設(shè)
是曲線
上的一個動點,求點
到直線
距離的最小值.
【答案】(1)(
為參數(shù));(2)
.
【解析】
(1)寫出圓的參數(shù)方程,利用伸縮變換可得出曲線
的參數(shù)方程;
(2)寫出曲線的普通方程,先判斷出直線
與曲線
相離,設(shè)點
,利用點到直線的距離公式,結(jié)合輔助角公式以及正弦函數(shù)的有界性可求得點
到直線
距離的最小值.
(1)圓的參數(shù)方程為
(
為參數(shù)),
將圓上每一點的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>
,得到曲線
,
所以曲線的參數(shù)方程是
(
為參數(shù));
(2)因為C的普通方程是.
與直線聯(lián)立解得
.
因為,方程無解,所以直線
與曲線
相離.
則點到直線
距離為
,
,所以,當(dāng)
時,
取最小值,即
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:
①在線性回歸模型中,相關(guān)指數(shù)越接近于1,表示回歸效果越好;
②兩個變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)r就越接近于1;
③在回歸直線方程中,當(dāng)解釋變量
每增加一個單位時,預(yù)報變量
平均減少0.5個單位;
④兩個模型中殘差平方和越小的模型擬合的效果越好.
⑤回歸直線恒過樣本點的中心
,且至少過一個樣本點;
⑥若的觀測值滿足
≥6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺�。�
⑦從統(tǒng)計量中得知有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯誤. 其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點為極點,
軸的正半軸為極軸,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程和直線
的直角坐標(biāo)方程;
(2)若射線的極坐標(biāo)方程為
(
).設(shè)
與
相交于點
,
與
相交于點
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在x=1時取得極值,求實數(shù)a的值;
(2)當(dāng)0<a<1時,求零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是正整數(shù),集合
是數(shù)集
的一個子集,且
中任意兩個數(shù)的差不等于4或7.若
的元素個數(shù)的最大值記為
(如
,
),試求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),曲線
的直角坐標(biāo)方程為
.
(1)求與
的極坐標(biāo)方程;
(2)在以為極點,
軸的正半軸為極軸的極坐標(biāo)系中,射線
與
的異于極點的交點為
,與
的異于極點的交點為
,求
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com