19.已知y=f(x)為(0,+∞)上的可導(dǎo)函數(shù),且(x+1)f′(x)>f(x),則以下一定成立的是( 。
A.3f(4)<4f(3)B.3f(4)>4f(3)C.3f(3)<4f(2)D.3f(3)>4f(2)

分析 令g(x)=$\frac{f(x)}{x+1}$,得到g(x)在(0,+∞)遞增,從而g(2)<g(3),求出答案.

解答 解:由(x+1)f′(x)>f(x),得:(x+1)f′(x)-f(x)>0,
令g(x)=$\frac{f(x)}{x+1}$,則g′(x)=$\frac{(x+1)f′(x)-f(x)}{{(x+1)}^{2}}$>0,
∴g(x)在(0,+∞)遞增,
∴g(2)<g(3),
即$\frac{f(2)}{3}$<$\frac{f(3)}{4}$,
即4f(2)<3f(3),
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.命題p:x,y滿足不等式組$\left\{\begin{array}{l}2x+3y-6≤0\\ 2x+y-2≥0\\ x≤2\end{array}\right.$,q:x2+y2>r2(r>0),若p是q的充分不必要條件,則r的取值范圍是(0,$\frac{2\sqrt{5}}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.要做一個(gè)圓錐形漏斗,其母線長(zhǎng)為30cm,要使其體積最大,則其高應(yīng)為( 。
A.12$\sqrt{3}$cmB.10$\sqrt{3}$cmC.8$\sqrt{3}$cmD.5$\sqrt{3}$cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列命題正確的個(gè)數(shù)是( 。
(1)命題“若m>0,則方程x2+x-m=0有實(shí)根”的逆否命題為:“若方程x2+x-m=0無(wú)實(shí)根,則m≤0”
(2)對(duì)于命題p:“?x∈R,使得x2+x+1<0”,則?p:“?x∈R,均有x2+x+1≥0”
(3)“x≠1”是“x2-3x+2≠0”的充分不必要條件
(4)若p∧q為假命題,則p,q均為假命題.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在△ABC中,C=90°,CB=3,點(diǎn)M是AB上的動(dòng)點(diǎn)(包含端點(diǎn)),則$\overrightarrow{MC}$•$\overrightarrow{CB}$的取值范圍為[-9,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知$\overrightarrow{OA}$=(k,2),$\overrightarrow{OB}$=(1,2k),$\overrightarrow{OC}$=(1-k,-1)且相異的三點(diǎn)A、B、C共線,則實(shí)數(shù)k=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.圓x2+y2-4x=0的圓心坐標(biāo)和半徑分別為(  )
A.(2,0),4B.(2,0),2C.(-2,0),4D.(-2,0),2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖所示,四棱錐P-ABCD的底面是邊長(zhǎng)為a的菱形,∠DAB=60°,側(cè)面PAD⊥底面ABCD,PA=PD.
(1)證明:AD⊥PB;
(2)若PB=$\frac{\sqrt{5}}{2}$a,求三棱錐B-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在等差數(shù)列{an}中,a8=11,d=3,求數(shù)列{an}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案