半徑為r的球在一個(gè)圓錐內(nèi)部,它的軸截面是一個(gè)正三角形與其內(nèi)切圓,則圓錐的全面積與球面面積的比是
 
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:通過(guò)軸截面是一個(gè)正三角形與其內(nèi)切圓,求出圓錐的底面半徑與圓錐的高,求出球的表面積與圓錐的全面積,即可得到比值.
解答: 解:因?yàn)榘霃綖閞的球在一個(gè)圓錐內(nèi)部,它的軸截面是一個(gè)正三角形與其內(nèi)切圓,
所以圓錐的高為:3r,正三角形的高為:3r,所以正三角形的邊長(zhǎng)a,
3
2
a=3r
,
所以a=2
3
r,
球的表面積為:4πr2,
圓錐的表面積為:(
3
r)2π+
1
2
×2
3
rπ×2
3
r
=9πr2
圓錐的全面積與球面面積的比:9:4.
故答案為:9:4.
點(diǎn)評(píng):本題考查圓錐的內(nèi)接球,球的表面積與圓錐的表面積的求法,考查計(jì)算能力,空間想象能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E經(jīng)過(guò)A(1,
3
2
),一個(gè)焦點(diǎn)坐標(biāo)為(-1,0),求以P(1,
3
2
)為中點(diǎn)的弦所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓錐曲線C:
x=2cosα
y=
3
sinα
(α為參數(shù))和定點(diǎn)A(0,
3
),F(xiàn)1、F2是此圓錐曲線的左、右焦點(diǎn),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線AF2的直角坐標(biāo)方程;
(2)經(jīng)過(guò)點(diǎn)F1且與直線AF2垂直的直線l交此圓錐曲線于M、N兩點(diǎn),求|MF1|-|NF1|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=tanx+sinx-|tanx-sinx|在區(qū)間(
π
2
2
)內(nèi)的最大值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為0的等差數(shù)列{an}滿(mǎn)足S7=77,且a1,a3,a11成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2 an,求數(shù)列{bn}的前n項(xiàng)和為T(mén)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(-2,0),F(xiàn)2(2,0)兩點(diǎn),動(dòng)點(diǎn)P滿(mǎn)足|PF1|+|PF2|=
3
2
|F1F2|,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2ax,g(x)=-x2-1,若函數(shù)f(x)與g(x)有兩條公切線,且由四個(gè)切點(diǎn)組成的多邊形的周長(zhǎng)為6.則a 的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+1,若存在x∈R,使得不等式f2(x)+x[f(x)+x]-af(x)[f(x)+x]≤0成立,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)球的表面積為36πcm2,則它的半徑等于( 。
A、3πcm
B、3
3
πcm
C、3cm
D、3
3
cm

查看答案和解析>>

同步練習(xí)冊(cè)答案