16.下列結(jié)論中,正確的是( 。
A.“x>2”是“x2-2x>0”成立的必要條件
B.已知向量$\overrightarrow{a}$,$\overrightarrow$,則“$\overrightarrow{a}$∥$\overrightarrow$”是“$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{0}$”的充要條件
C.命題“p:?x∈R,x2≥0”的否定形式為“¬p:?x0∈R,x02≥0”
D.命題“若x2=1,則x=1”的逆否命題為假命題

分析 A.根據(jù)充分條件和必要條件的定義進行判斷,
B.根據(jù)向量共線的等價條件進行判斷,
C.根據(jù)全稱命題的否定是特稱命題進行判斷,
D.根據(jù)逆否命題的等價性進行判斷.

解答 解:A.由x2-2x>0得x>2或x<0,則“x>2”是“x2-2x>0”成立的充分不必要條件,故A錯誤,
B.若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$=λ$\overrightarrow$,則$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{0}$不一定成立,若$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{0}$,則$\overrightarrow{a}$=-$\overrightarrow$,則$\overrightarrow{a}$∥$\overrightarrow$成立,
即“$\overrightarrow{a}$∥$\overrightarrow$”是“$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{0}$”的必要不充分條件,故B錯誤,
C.命題“p:?x∈R,x2≥0”的否定形式為“¬p:?x0∈R,x02<0”,故C錯誤,
D.∵由x2=1得x=1或x=-1,
∴命題“若x2=1,則x=1”為假命題,則命題的逆否命題也為假命題,
故D正確,
故選:D

點評 本題主要考查命題的真假判斷,涉及的知識點較多,綜合性較強,但難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知實數(shù)x,y滿足xy-3=x+y,且x>1,則y(x+8)的最小值是( 。
A.33B.26C.25D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項和為Sn,且Sn=$\frac{1}{2}$(3an-1).?dāng)?shù)列{bn}為等差數(shù)列,b1=a1,b2=a3
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設(shè)cn=$\frac{{4({n^2}+n+1)}}{{b_{n+1}^2-1}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知雙曲線Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點為M,第二象限的點P,Q在雙曲線的某條漸近線上,且$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OQ}$,若△MPQ為等邊三角形,則下列結(jié)論正確的有①②(寫出所有正確結(jié)論的序號)
①雙曲線的漸近線方程為y=±$\frac{\sqrt{3}}{2}$x;
②雙曲線的離心率為$\frac{\sqrt{7}}{2}$;
③雙曲線的頂點為(±2,0);
④雙曲線的焦點為(±3,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,圓錐形容器的高為h,圓錐內(nèi)水面的高為h1,且$\frac{h_1}{h}$=$\frac{1}{3}$,若將圓錐倒置,水面高為h2,則$\frac{h_2}{h}$等于$\frac{\root{3}{19}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.“x>2”是“x2-2x>0”成立的(  )
A.既不充分也不必要條件B.充要條件
C.必要而不充分條件D.充分而不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}是等差數(shù)列,公差d>0,a1=2,其前n項為Sn(n∈N*).且a1,a4,S5+2成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項an及前n項和Sn
(Ⅱ)若anbn=4,數(shù)列{bnbn+2}的前n項和為Tn,證明:對n∈N*,$\frac{4}{3}≤{T_n}$<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某校共有學(xué)生2000名,各年級男、女生人數(shù)如表中所示.已知在全校學(xué)生中隨機抽取1名,抽到二年級女生的概率是0.18.現(xiàn)用分層抽樣的方法在全校抽取64名學(xué)生,則應(yīng)在三年級抽取的學(xué)生人數(shù)為( 。
一年級二年級三年級
女生363xy
男生387390z
A.12B.16C.18D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若集合P={x|4<x<10},Q={x|3<x<7},則P∪Q等于( 。
A.{x|3<x<7}B.{x|3<x<10}C.{x|3<x<4}D.{x|4<x<7}

查看答案和解析>>

同步練習(xí)冊答案