【題目】設(shè)函數(shù)的定義域為,如果存在非零常數(shù),對于任意,都有,則稱函數(shù)似周期函數(shù),非零常數(shù)為函數(shù)似周期”.現(xiàn)有下面四個關(guān)于似周期函數(shù)的命題:

①如果似周期函數(shù)似周期,那么它是周期為的周期函數(shù);

②函數(shù)似周期函數(shù)

③函數(shù)似周期函數(shù);

④如果函數(shù)似周期函數(shù),那么,”.

其中是真命題的序號是___________.(寫出所有滿足條件的命題序號)

【答案】①④.

【解析】

①由題意知,從而可得;

②由恒成立;從而可判斷;

③由恒成立;從而可判斷;

④由恒成立;即恒成立,從而可得,從而解得結(jié)果.

解:①似周期函數(shù)似周期,

,

故它是周期為的周期函數(shù),故正確;

②若函數(shù)似周期函數(shù),則,

恒成立;

恒成立,

上式不可能恒成立;

故錯誤;

③若函數(shù)似周期函數(shù),則,

恒成立;

成立,無解;故錯誤;

④若函數(shù)似周期函數(shù),則,

恒成立;

恒成立;

恒成立,

,則

,;故正確;

故答案為:①④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱柱的底面是菱形,平面,是側(cè)棱上的點

1)證明:平面;

2)若的中點,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)有下述四個結(jié)論:①若,則;②的圖象關(guān)于點對稱;③函數(shù)上單調(diào)遞增;④的圖象向右平移個單位長度后所得圖象關(guān)于軸對稱.其中所有正確結(jié)論的編號是( )

A.①②④B.①②C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域是上的連續(xù)函數(shù)圖像的兩個端點為,是圖像上任意一點,過點作垂直于軸的直線交線段于點(點與點可以重合),我們稱的最大值為該函數(shù)的曲徑,下列定義域是上的函數(shù)中,曲徑最小的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)定義已知偶函數(shù)的定義域為時,

1)求并求出函數(shù)的解析式;

2)若存在實數(shù)使得函數(shù)上的值域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,點在線段上移動,有下列判斷:①平面平面;②平面平面;③三棱錐的體積不變;④平面.其中,正確的是______.(把所有正確的判斷的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果對任意,恒有成立,則稱階縮放函數(shù).

1)已知函數(shù)為二階縮放函數(shù),且當時,,求的值;

2)已知函數(shù)為二階縮放函數(shù),且當時,,求證:函數(shù)上無零點;

3)已知函數(shù)階縮放函數(shù),且當時, 的取值范圍是,求上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合,.

(1),求實數(shù)的值;

(2),求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是一個集合,是一個以的某些子集為元素的集合,且滿足:(1屬于屬于;(2中任意多個元素的并集屬于;(3中任意多個元素的交集屬于,則稱是集合上的一個拓補.已知集合,對于下面給出的四個集合

其中是集合上的拓補的集合的序號是______.(寫出所有的拓補的集合的序號)

查看答案和解析>>

同步練習(xí)冊答案