20.氣象意義上從春季進入夏季的標志為:“連續(xù)5天的日平均溫度均不低于22℃.”現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù),單位:℃):
①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;
②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24;
③丙地:5個數(shù)據(jù)中有一個數(shù)據(jù)是32,總體均值為26,總體方差為10.2.
則肯定進入夏季的地區(qū)有2個.

分析 利用中位數(shù)、眾數(shù)、均值、方差的性質(zhì)進行求解.

解答 解:①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22,
所以前三個數(shù)為22,22,23,則后兩個數(shù)肯定大于23,故甲地從春季進入夏季,故①成立;
②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24,
可以找到很多反例,如:18,19,27,28,28,故乙地沒有從春季進入夏季,故②不成立;
③5個數(shù)據(jù)中有一個數(shù)據(jù)是32,總體均值為26,總體方差為10.8.設x1<x2<x3<x4
$\frac{1}{5}$[(x1-26)2+(x2-26)2+(x3-26)2+(x4-26)2+62]=10.2,
∴(x1-26)2+(x2-26)2+(x3-26)2+(x4-26)2=15,
∴(x1-26)2≤15,
得|x1-26|≤$\sqrt{15}$,∴x1≥26-$\sqrt{15}$>22,∴丙地從春季進入夏季,故③成立.
∴定進入夏季的地區(qū)有甲和丙2個地區(qū).
故答案為:2.

點評 本題主要考查的是數(shù)字特征.利用中位數(shù)、眾數(shù)、平均數(shù)、極差、方差怎么來估算該組數(shù)據(jù)的其他數(shù),是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖,曲線f(x)=x2和g(x)=2x圍成幾何圖形的面積是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,將一副三角板拼接,使他們有公共邊BC,且使這兩個三角形所在的平面互相垂直,∠BAC=∠CBD=90°,AB=AC,∠BCD=30°,BC=6.
(Ⅰ)證明:DB⊥AB;
(Ⅱ)求點C到平面ADB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若橢圓$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{6}$=1的焦距等于2,則m的值為(  )
A.10B.7C.10或4D.7或5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知雙曲線 C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的虛軸端點到一條漸近線的距離為$\frac{2}$,則雙曲線C的離心率為( 。
A.3B.$\sqrt{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知全集U=R,集合A={x|-1≤x≤1},B={x|x2-2x≤0},則(∁UA)∪(∁UB)=( 。
A.{x|x<-1或x>1}B.{x|x<0或x<2}C.{x|x<0或x>1}D.{x|x<0或x>2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中$\overrightarrow{m}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow{n}$=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相鄰兩對稱軸間的距離等于$\frac{π}{2}$.
(Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)在△ABC中,a、b、c分別是角A、B、C的對邊,a=$\sqrt{5}$,f(${\frac{C}{2}$+$\frac{π}{6}}$)=$\frac{{2\sqrt{5}}}{3}$,△ABC的面積為$2\sqrt{5}$,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.如果正實數(shù)x,y滿足xy+2x+y=4,則3x+2y的最小值為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知數(shù)列{an}的前n項和Sn=2n,那么數(shù)列{an}的通項公式an=$\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

同步練習冊答案