6.襄陽市某優(yōu)質(zhì)高中為了選拔學生參加“全國中學生英語能力競賽(NEPCS)”,先在本校進行初賽(滿分150分),若該校有100名學生參加初賽,并根據(jù)初賽成績得到如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,計算這100名學生參加初賽成績的中位數(shù);
(2)該校推薦初賽成績在110分以上的學生代表學校參加競賽,為了了解情況,在該校推薦參加競賽的學生中隨機抽取2人,求選取的兩人的初賽成績在頻率分布直方圖中處于不同組的概率.

分析 (1)根據(jù)頻率分布直方圖,求出每個矩形的面積,即每組的概率,每組的中值乘以每組的頻率之和即這100名學生參加選拔測試的平均成績;
(2)利用頻率分布直方圖計算分數(shù)在[110,130)和[130,150)的人數(shù)分別予以編號,列舉出隨機抽出2人的所有可能,找出符合題意得情況,利用古典概型計算即可.

解答 (1)設(shè)初賽成績的中位數(shù)為x,則:(0.001+0.004+0.009)×20+0.02×(x-70)=0.5…(4分)
解得x=81,所以初賽成績的中位數(shù)為81;…(6分)
(2)該校學生的初賽分數(shù)在[110,130)有4人,分別記為A,B,C,D,分數(shù)在[130,150)有2人,分別記為a,b,在則6人中隨機選取2人,總的事件有(A,B),(A,C),(A,D),
(A,a),(A,b),(B,C),(B,D),(B,a),(B,b),(C,D),(C,a),(C,b),(D,a),(D,b),(a,b)共15個基本事件,其中符合題設(shè)條件的基本事件有8個…(10分)
故選取的這兩人的初賽成績在頻率分布直方圖中處于不同組的概率為P=$\frac{8}{15}$…(12分)

點評 本題考查頻率分布直方圖的應(yīng)用,古典概概率的計算,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.已知數(shù)列{an}的通項公式為an=(-1)n•n+2n,n∈N*,則這個數(shù)列的前n項和Sn=$\left\{\begin{array}{l}{{2}^{n+1}-\frac{n+5}{2},}&{n為奇數(shù)}\\{{2}^{n+1}+\frac{n-4}{2},}&{n為偶數(shù)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設(shè)函數(shù)f(x)的定義域D關(guān)于原點對稱,且存在常數(shù)a>0,使f(a)=1,又f(x1-x2)=$\frac{f({x}_{1})-f({x}_{2})}{1+f({x}_{1})f({x}_{2})}$,
(1)在我們學過的函數(shù)中,寫出f(x)的一個函數(shù)解析式,并說明其符合題設(shè)條件;
(2)若存在正常數(shù)T使得等式f(x-T)=f(x)對于x∈D都成立,則稱f(x)是周期函數(shù),T為周期;試問f(x)是不是周期函數(shù)?若是,則求出它的一個周期T;若不是,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.(x+$\sqrt{2}$)10的展開式中第7項的二項式系數(shù)是( 。
A.120B.210C.960D.840

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知F1,F(xiàn)2分別是雙曲線3x2-y2=3a2(a>0)的左,右焦點,P是拋物線y2=8ax與雙曲線的一個交點,若|PF1|+|PF2|=12,則拋物線的準線方程為x=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若f(x)=$\sqrt{x+2}$,則f(x)的定義域是{x|x≥-2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖所示,三棱錐A-BCD的三條側(cè)棱AB,AC,AD兩兩互相垂直,O為點A在底面BCD上的射影.
(1)求證:O為△BCD的垂心;
(2)類比平面幾何的勾股定理,猜想此三棱錐側(cè)面與底面間的一個關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在△ABC中,∠C=$\frac{π}{2}$,求證:∠B<$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且過點M(-2,0).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設(shè)直線l:x=ky+1與橢圓C相交于A(x1,y1),B(x2,y2)兩點,連接MA,MB交直線x=4于P,Q兩點,yP,yQ分別為P、Q的縱坐標,求證:$\frac{1}{{y}_{1}}$+$\frac{1}{{y}_{2}}$=$\frac{1}{{y}_{P}}$+$\frac{1}{{y}_{Q}}$.

查看答案和解析>>

同步練習冊答案