設(shè)f(x)=
xax
ax-1
-
x
2
(a>0且a≠1)
(1)判斷f(x)的奇偶性;
(2)若f(x)<0在定義域上恒成立,求a的取值范圍.
考點(diǎn):函數(shù)恒成立問題,函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)函數(shù)奇偶性的定義即可判斷f(x)的奇偶性;
(2)根據(jù)函數(shù)是偶函數(shù),將不等式恒成立轉(zhuǎn)化為當(dāng)x>0時(shí),f(x)<0恒成立即可.
解答: 解:(1)函數(shù)的定義域?yàn)椋?∞,0)∪(0,+∞),
則f(x)=x•(
ax
ax-1
-
1
2
)=x•
ax+1
2(ax-1)
,
則f(-x)=-x•
a-x+1
2(a-x-1)
=-x•
1+ax
2(1-ax)
=x•
ax+1
2(ax-1)
=f(x),
則f(x)是偶函數(shù).
(2)∵f(x)是偶函數(shù),
∴若f(x)<0在定義域上恒成立,
則只要當(dāng)x>0時(shí),f(x)<0恒成立即可,
即x•
ax+1
2(ax-1)
<0,x>0,
則等價(jià)為ax-1<0在x>0恒成立,
即ax<1在x>0恒成立,
則0<a<1.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性的判斷,以及不等式恒成立問題,利用函數(shù)奇偶性將不等式進(jìn)行轉(zhuǎn)化,結(jié)合指數(shù)函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平行六面體ABCD-A1B1C1D1中,以頂點(diǎn)A為端點(diǎn)的三條棱長度都為2,且兩兩夾角為60°,則DB1和C1A1所成角大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,AA1=a,E、F分別是BC、DC的中點(diǎn),則AD1與EF所成的角的大小為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A1B1C1D1中,其中ABCD是正方形,AA1>AB.設(shè)點(diǎn)A到直線B1D的距離和到平面DCB1A1的距離分別為d1,d2,則
d1
d2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ln(
e-3x+1
e3x+1
)=2ax,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(arcsinx)+
3
sin(arcsinx)
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2cosφ,2sinφ),φ∈(90°,180°),
b
=(1,1),則向量
a
b
的夾角為(  )
A、φB、φ-45°
C、135°-φD、45°-φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2ωx-
π
6
)-2cos2ωx+1(ω>0)直線y=
3
與函數(shù)f(x)圖象相鄰兩交點(diǎn)的距離為π.
(1)求ω的值;
(2)若g(x)=af(x)+b在[0,
π
2
]上的最大值為
3
+
5
2
,最小值為1,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx+c和g(x)=2x+b,若對(duì)任意的x∈R,恒有f(x)≥g(x)
(1)證明:c≥1且c≥b
(2)證明:當(dāng)x≥0時(shí),(x+c)2≥f(x)

查看答案和解析>>

同步練習(xí)冊(cè)答案