20.已知{an}為等比數(shù)列,a1=3,且4a1,2a2,a3成等差數(shù)列,則a3+a5等于( 。
A.189B.72C.60D.33

分析 由4a1,2a2,a3成等差數(shù)列,根據(jù)等差數(shù)列的性質(zhì)和a1的值,即可求出公比q的值,然后寫出等比數(shù)列的通項公式,利用通項公式把所求的式子化簡即可求出值.

解答 解:由4a1,2a2,a3成等差數(shù)列,得到4a2=4a1+a3,
又a1=3,設(shè)公比為q,可化為:12q=12+3q2,即(q-2)2=0,
解得:q=2,所以an=3×2n-1,
則a3+a5=12+48=60.
故選:C.

點(diǎn)評 此題考查學(xué)生掌握等差數(shù)列的性質(zhì),靈活運(yùn)用等比數(shù)列的通項公式化簡求值,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知拋物線x2=8y的焦點(diǎn)F到雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線的距離為$\frac{4\sqrt{5}}{5}$,點(diǎn)P是拋物線x2=8y上一動點(diǎn),P到雙曲線C的右焦點(diǎn)F2的距離與到直線y=-2的距離之和的最小值為3,則該雙曲線的標(biāo)準(zhǔn)方程為$\frac{x^2}{4}$-y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)已知在數(shù)列{an}中,a1=7,a2=9,前n項和Sn滿足Sn+Sn-2=2Sn-1+2n-1(n≥3),試求整列{an}的通項公式.
(2)設(shè)數(shù)列{an}的前n項和Sn,已知ban-2n=(b-1)Sn.當(dāng)b=2時,試證明數(shù)列{an-n•2n-1}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow a,\overrightarrow b$,其中$|{\overrightarrow a}|=\sqrt{3},|{\overrightarrow b}|=2$,且$({\overrightarrow a-\overrightarrow b})⊥\overrightarrow a$,則向量$\overrightarrow a和\overrightarrow b$的夾角是$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.試判斷命題“設(shè)f(x)=x2+ax+b,a,b∈R,若f(x)=x無實根,則必有f(x)>x且f(f(x))>x”的逆否命題的真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.若向量$\overrightarrow{a}$=($\sqrt{3}$sinωx,sinωx),$\overrightarrow$=(cosωx,sinωx)其中ω>0,記函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$-$\frac{1}{2}$,且函數(shù)f(x)的圖象相鄰兩條對稱軸之間的距離是$\frac{π}{2}$.
(Ⅰ)求f(x)的表達(dá)式及f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)△ABC三內(nèi)角A、B、C的對應(yīng)邊分別為a、b、c,若a+b=3,c=$\sqrt{3}$,f(C)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若不等式x2-5x+6<0的解集為(a,b),則$\underset{lim}{n→∞}$$\frac{{a}^{n}-2^{n}}{3{a}^{n}-4^{n}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若y=4-$\sqrt{-{x}^{2}+2x+3}$最小值為a,最大值為b,則$\underset{lim}{n→∞}$$\frac{{a}^{n}-2^{n}}{3{a}^{n}-4^{n}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在正四棱柱ABCD-A1B1C1D1中,底面邊長為1,體積為2,E為AB的中點(diǎn),證明:A1E與C1B是異面直線,并求出它們所成的角的大。ńY(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

同步練習(xí)冊答案