分析 (1)分別令n=1,2,3列方程計算;
(2)根據(jù)(1)的計算結(jié)果猜想,驗(yàn)證n=1時,猜想是否成立,假設(shè)n=k時猜想成立,推導(dǎo)ak+1.
(3)計算an+1-an,然后使用等比數(shù)列的求和公式計算.
解答 解:(1)令n=1得,S1=2a1-3,即a1=2a1-3,∴a1=3;
令n=2得,S2=2a2-2,即a1+a2=2a2-2,∴a2=5;
令n=3得,S3=2a3-1,即a1+a2+a3=2a3-1,∴a3=9;
(2)猜想:an=2n+1,
證明:①當(dāng)n=1時,結(jié)論顯然成立;
②假設(shè)當(dāng)n=k時結(jié)論成立,即ak=2k+1,∴Sk=2ak+k-4=2(2k+1)+k-4=2k+1+k-2.
∴Sk+1=2k+2+k-1.
∴ak+1=Sk+1-Sk=(2k+2+k-1)-(2k+1+k-2)=2k+1+1.
即當(dāng)n=k+1時結(jié)論成立.
綜合①②可知,猜想an=2n+1對任意n∈N*都成立.
∴數(shù)列{an}的通項(xiàng)公式為an=2n+1.
(3)∵an=2n+1,∴an+1-an=2n,
∴$\frac{1}{{a}_{2}-{a}_{1}}$+$\frac{1}{{a}_{3}-{a}_{2}}$+$\frac{1}{{a}_{4}-{a}_{3}}$+…+$\frac{1}{{a}_{n+1}-{a}_{n}}$=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$<1.
∴對任意n∈N*都有$\frac{1}{{a}_{2}-{a}_{1}}$+$\frac{1}{{a}_{3}-{a}_{2}}$+$\frac{1}{{a}_{4}-{a}_{3}}$+…+$\frac{1}{{a}_{n+1}-{a}_{n}}$<1.
點(diǎn)評 本題考查了數(shù)學(xué)歸納法的證明,等比數(shù)列的性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 只有一個小于1 | B. | 都小于1 | C. | 都大于1 | D. | 至少有一個小于1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{13}$+$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{18}$=1 | D. | $\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{9}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com