如圖,在邊長(zhǎng)為5的正方形中隨機(jī)撒1000粒黃豆,有200粒落到陰影部分,據(jù)此估計(jì)陰影部分的面積為
 
考點(diǎn):幾何概型
專(zhuān)題:概率與統(tǒng)計(jì)
分析:先求出正方形的面積為25,設(shè)陰影部分的面積為x,由概率的幾何概型知陰影部分面積為正方形面積的
200
1000
=
1
5
,由此能求出該陰影部分的面積.
解答: 解:設(shè)陰影部分的面積為x,
由概率的幾何概型知,則
200
1000
=
1
5
=
x
25
,
解得x=5.
故答案為:5
點(diǎn)評(píng):本題考查概率的性質(zhì)和應(yīng)用;每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱(chēng)這樣的概率模型為幾何概型,可以用來(lái)求不規(guī)則圖形的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知θ∈(0,π),且sinθ+cosθ=
1
3
,求sinθ-cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
=(
3
cosωx,sinωx),
b
=(sinωx,0)
,(ω>0)且函數(shù)f(x)=(
a
+
b
)•
b
-
1
2
的最小正周期為π.
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)若函數(shù)y=f(
x
2
+
π
3
),x∈(
π
2
,3π)
的圖象與直線y=a的交點(diǎn)的橫坐標(biāo)成等比數(shù)列,試求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求1.02δ的近似值(精確到小數(shù)點(diǎn)后三位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(
π
2
-x)的圖象( 。
A、關(guān)于x軸對(duì)稱(chēng)
B、關(guān)于y軸對(duì)稱(chēng)
C、關(guān)于原點(diǎn)對(duì)稱(chēng)
D、關(guān)于直線x=
π
2
對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算
ab
cd
=ad+bc
(1)若
3
sin
x
4
1
cos2
x
4
cos
x
4
=0,求cos(
2
3
π-x)的值;
(2)記f(x)=
3
sin
x
4
cos2
x
4
1cos
x
4
,在△ABC中,有A,B,C滿(mǎn)足條件:sinAcosB-cosBsinC=cosCsinB-cosBsinA,求函數(shù)f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)為F,過(guò)點(diǎn)F作與x軸垂直的直線l交兩漸近線于A,B兩點(diǎn),且與雙曲線在第一象限的交點(diǎn)為P,設(shè)O為坐標(biāo)原點(diǎn),若
OP
OA
OB
(λ,μ∈R),λ•μ=
3
16
,則雙曲線的離心率為( 。
A、
2
3
3
B、
3
5
5
C、
3
2
2
D、
9
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知圓E:(x+
3
)2+y2
=16,點(diǎn)F(
3
,0)
,P是圓E上任意一點(diǎn).線段PF的垂直平分線和半徑PE相交于Q.
(Ⅰ)求動(dòng)點(diǎn)Q的軌跡Γ的方程;
(Ⅱ)設(shè)直線l與(Ⅰ)中軌跡Γ相交于A,B兩點(diǎn),直線OA,l,OB的斜率分別為k1,k,k2(其中k>0).△OAB的面積為S,以O(shè)A,OB為直徑的圓的面積分別為S1,S2.若k1,k,k2恰好構(gòu)成等比數(shù)列,求
S1+S2
S
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等差數(shù)列,且a1=12,a6=27.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an+2n}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案