19.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-3≤0}\\{y-1≥0}\\{x-y+1≥0}\end{array}\right.$,若ax+y的最大值為10,則實數(shù)a=( 。
A.4B.3C.2D.1

分析 畫出滿足條件的平面區(qū)域,判斷最優(yōu)解的位置,將點的坐標代入求出a的值即可.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:

由$\left\{\begin{array}{l}{x=3}\\{x-y+1=0}\end{array}\right.$,解得A(3,4),
令z=ax+y,因為z的最大值為10,
所以直線在y軸上的截距的最大值為10,即直線過(0,10),
所以z=ax+y與可行域有交點,
當a>0時,
直線經(jīng)過A時z取得最大值.
即ax+y=10,將A(3,4)代入得:
3a+4=10,解得:a=2,
當a≤0時,
直線經(jīng)過A時z取得最大值.
即ax+y=10,將A(3,4)代入得:
3a+4=10,解得:a=2,與a≤0矛盾,
綜上:a=2.

點評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.對任意x∈[0,$\frac{π}{6}$],任意y∈(0,+∞),不等式$\frac{y}{4}$-2cos2x≥asinx-$\frac{9}{y}$恒成立,則實數(shù)a的取值范圍是(  )
A.(-∞,3]B.[-2$\sqrt{2}$,3]C.[-2$\sqrt{2}$,2$\sqrt{2}$]D.[-3,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知在直三棱柱ABC-A1B1C1中,△ABC為等腰直角三角形,AB=AC=4,AA1=a.棱BB1的中點為E,棱B1C1的中點為F,平面AEF與平面AA1C1C的交線與AA1所成角的正切值為$\frac{2}{3}$,則三棱柱ABC-A1B1C1外接球的半徑為$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB∥DC,DA⊥AB,AB=AP=2,DA=DC=1,E為PC上一點,且PE=$\frac{2}{3}$PC.
(Ⅰ)求PE的長;
(Ⅱ)求證:AE⊥平面PBC;
(Ⅲ)求二面角B-AE-D的度數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{3}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\frac{1}{2}$,則$\overrightarrow{a}$+2$\overrightarrow$與$\overrightarrow$的夾角是( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,已知梯形CDEF與△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,連接BC,BF.
(Ⅰ)若G為AD邊上一點,DG=$\frac{1}{3}$DA,求證:EG∥平面BCF;
(Ⅱ)求二面角E-BF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某種多面體玩具共有12個面,在其十二個面上分別標有數(shù)字1,2,3,…,12.若該玩具質(zhì)地均勻,則拋擲該玩具后,任何一個數(shù)字所在的面朝上的概率均相等.拋擲該玩具一次,記事件A=“向上的面標記的數(shù)字是完全平方數(shù)(記能寫出整數(shù)的平方形式的數(shù),如9=32,9是完全平方數(shù))”
(1)甲、乙二人利用該玩具進行游戲,并規(guī)定:
①甲拋擲一次,若事件A發(fā)生,則向上一面的點數(shù)的6倍為甲的得分;若事件A不發(fā)生,則甲得0分;②乙拋擲一次,將向上的一面對應(yīng)的數(shù)字作為乙的得分;
(ⅰ) 甲、乙二人各拋擲該玩具一次,求二人得分的期望;
(ⅱ)甲、乙二人各拋擲該玩具一次,求甲的得分不低于乙的概率;
(2)拋擲該玩具一次,記事件B=“向上一面的點數(shù)不超過k(1≤k≤12)”,若事件A與B相互獨立,試求出所有的整數(shù)k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的左、右焦點分別為F1、F2,過F2作x軸的垂線交橢圓于點P,過P與原點O的直線交橢圓于另一點Q,則△F1PQ的周長為( 。
A.4B.8C.$4+\sqrt{13}$D.$2+\sqrt{13}$

查看答案和解析>>

同步練習冊答案