20.圖1是計算圖2中空白部分面積的程序框圖,則①處應填$\frac{π{a}^{2}}{2}$-a2

分析 由已知求得空白部分面積為關于正方形的邊長a的解析式,從而得解.

解答 解:由題意可得:空白部分面積S=a2-2[a2-$π×(\frac{a}{2})^{2}$]=$\frac{π{a}^{2}}{2}$-a2
故答案為:$\frac{π{a}^{2}}{2}$-a2

點評 本題考查了賦值語句的應用,考查了圓的面積公式,正方形面積公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.盒中裝有7個零件,其中4個是沒有使用過的,3個是使用過的.
(Ⅰ)從盒中每次隨機抽取1個零件,有放回的抽取3次(不使用),求3次抽取中恰有2次抽到使用過零件的概率;
(Ⅱ)從盒中任意抽取3個零件,使用后放回盒子中,設X為盒子中使用過零件的個數(shù),求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知復數(shù)α滿足(2-i)α=3-4i,β=m-i,m∈R.
(1)若|α+β|<2|$\overline{α}$|,求實數(shù)m的取值范圍;
(2)若α+β是關于x的方程x2-nx+13=0(n∈R)的一個根,求實數(shù)m與n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知tan(π-α)=2,則tan2α=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知2f(x)+f($\frac{1}{x}$)=3x,x≠0,則f(x)的解析式是f(x)=2x-$\frac{1}{x}$,(x≠0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.假設某人的手機在一天內(nèi)收到1條、2條、3條垃圾短信的概率分別為0.5、0.3、0.2,則該手機明天和后天一共收到至少5條垃圾短信的概率為( 。
A.0.1B.0.16C.0.2D.0.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知圓P與圓C1關于直線l:x-y+3=0對稱,圓C1方程為:(x+3)2+(y-4)2=4.
(1)求圓P方程;
(2)點Q為直線l上一動點,過點Q作圓P的切線,求切線長的最小值;
(3)梯形ABCD(AB∥CD∥y軸,且AB>CD)內(nèi)接于圓P,點E是對角線AC與BD的交點,求$\frac{AB-CD}{PE}$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若數(shù)列{an}的前n項和Sn=3n+1,則此數(shù)列的通項公式為an=$\left\{\begin{array}{l}{4,n=1}\\{2×{3}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若存在x∈(0,+∞),使不等式ex(ax+3a-1)<1成立,則實數(shù)a的取值范圍為( 。
A.{a|0<a<$\frac{1}{3}$}B.{a|a<$\frac{2}{e+1}$}C.{a|a<$\frac{2}{3}$}D.{a|a<$\frac{1}{3}$}

查看答案和解析>>

同步練習冊答案