17.若a>0,b>0,f(x)=4x3-ax2-2bx+2在x=1處有極值,則a+b=( 。
A.2B.3C.6D.9

分析 求出導(dǎo)函數(shù),利用函數(shù)在極值點處的導(dǎo)數(shù)值為0得到a,b滿足的條件.

解答 解:由題意,求導(dǎo)函數(shù)f′(x)=12x2-2ax-2b,
∵在x=1處有極值,
∴f′(1)=0,∴12-2a-2b=0,
∴a+b=6,
故選:C.

點評 本題考查了導(dǎo)數(shù)的應(yīng)用,考查函數(shù)在極值點處的導(dǎo)數(shù)值為0,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.點M(x,y)在函數(shù)y=2x+8的圖象上,當(dāng)x∈[-3,5]時,
(1)求$\frac{y+1}{x+1}$的取值范圍;
(2)求$\frac{2y+1}{x-6}$的取值范圍;
(3)求$\frac{2x+1}{y-5}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{e^x}{x}$-a(x-lnx).
(Ⅰ)當(dāng)a=1時,試求f(x)在(1,f(1))處的切線方程;
(Ⅱ)當(dāng)a≤0時,試求f(x)的單調(diào)區(qū)間;
(Ⅲ)若f(x)在(0,1)內(nèi)有極值,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=$\frac{1}{3}$x3-ax2+1在x=-4處取得極大值,則實數(shù)a的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=x3-3x2-9x(0<x<4)的極小值是-27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x3-ax2+bx的圖象與直線12x+y-1=0相切于點(1,-11).
(1)求a,b的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知點$F(\frac{1}{2},0)$及直線$l:x=-\frac{1}{2}$.P為平面上的動點,過P作直線l的垂線,垂足為Q,且$\overrightarrow{QP}•\overrightarrow{QF}=\overrightarrow{FP}•\overrightarrow{FQ}$.
(1)求動點P的軌跡C的方程;
(2)設(shè)圓M過點A(1,0)且圓心M在P的軌跡C上,E1,E2是圓M在y軸上截得的弦,證明弦長|E1E2|是一個常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若數(shù)列{an}與{bn} 滿足an=$\frac{3+(-1)^{n+1}}{2}$,an+1bn+anbn+1=(-1)n+1,n∈N*,且b1=2,設(shè)數(shù)列{bn}的前n項和為Sn,則S99=( 。
A.1225B.1325C.1425D.1525

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若a為正實數(shù),i為虛數(shù)單位,且|$\frac{a+i}{i}}$|=2,則a=$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案