5.若函數(shù)f(x)=$\frac{1}{3}$x3-ax2+1在x=-4處取得極大值,則實數(shù)a的值為-2.

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的方程,求出a的值即可.

解答 解:f′(x)=x2-2ax=x(x-2a),
令f′(x)=0,解得;x=0或x=2a,
若函數(shù)f(x)=$\frac{1}{3}$x3-ax2+1在x=-4處取得極大值,
則2a=-4,解得:a=-2,
故答案為:-2.

點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=($\sqrt{1+x}$+$\sqrt{1-x}$+2)($\sqrt{1-{x}^{2}}$+1)的值域是( 。
A.[2+$\sqrt{2}$,8]B.[2+$\sqrt{2}$,+∞)C.[2,+∞)D.[2+$\sqrt{2}$,4$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.集合A={1,0,x},B={|x|,y,lg(xy)},且A=B,則x,y的值分別為-1,-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=\frac{1}{3}a{x^3}+{x^2}(a>0)$.
(Ⅰ)求函數(shù)y=f(x)的極值;
(Ⅱ)若存在實數(shù)x0∈(-1,0),且${x_0}≠-\frac{1}{2}$,使得$f({x_0})=f(-\frac{1}{2})$,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)常數(shù)a>0,函數(shù)f(x)=$\frac{x^2}{1+x}$-alnx
(Ⅰ)當(dāng)a=$\frac{3}{4}$時,求f(x)的最小值;
(Ⅱ)求證:f(x)有唯一的極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)$f(x)=2lnx-\frac{1}{2}m{x^2}-nx$,若x=2是f(x)的極大值點,則m的取值范圍為( 。
A.$({-\frac{1}{2},+∞})$B.$({-\frac{1}{2},0})$C.(0,+∞)D.$({-∞,-\frac{1}{2}})∪({0,+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若a>0,b>0,f(x)=4x3-ax2-2bx+2在x=1處有極值,則a+b=( 。
A.2B.3C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.用秦九韶算法計算當(dāng)x=3時,多項式f(x)=3x9+3x6+5x4+x3+7x2+3x+1的值時,求得v5的值是( 。
A.84B.252C.761D.2284

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.把$\lim_{n→+∞}\frac{1}{n}$($\frac{1}{n}$+$\frac{2}{n}$+$\frac{3}{n}$+…+$\frac{n-1}{n}$+1)寫成定積分式為${∫}_{0}^{1}$xdx.

查看答案和解析>>

同步練習(xí)冊答案