【題目】如圖,在正方體中,點是線段上的動點,則下列說法錯誤的是( )
A. 無論點在上怎么移動,異面直線與所成角都不可能是
B. 無論點在上怎么移動,都有
C. 當(dāng)點移動至中點時,才有與與相交于一點,記為點,且
D. 當(dāng)點移動至中點時,直線與平面所成角最大且為
【答案】D
【解析】
結(jié)合正方體的結(jié)構(gòu)特征及直線和平面的位置關(guān)系,對選項逐個分析即可選出答案。
對于A選項,設(shè)正方體棱長為1,連結(jié),由于,故就是直線與所成角,假如,則,因為三角形是邊長為的正三角形,高為,所以,由于,故不成立,即直線與所成角都不可能是,故A正確;
對于B選項,連結(jié),易知,且,,則平面,故,同理可證,因為,所以平面,由于在平面上,故無論點在上怎么移動,都有,即選項B正確;
對于C選項,易證和是正三棱錐,則和在平面的投影落在三角形的重心,故當(dāng)點移動至中點時,才有與與相交于一點,記為點,且,即選項C正確;
對于D選項,易證是正四面體,點在中點,設(shè)在平面的投影為,正四面體側(cè)棱為,直線與平面所成角,則,,,故,即選項D不正確。
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中.
(I)求證:AC⊥BD1;
(Ⅱ)是否存在直線與直線AA1,CC1,BD1都相交?若存在,請你在圖中畫出兩條滿足條件的直線(不必說明畫法及理由);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,,.
(1)用函數(shù)單調(diào)性的定義在在證明:函數(shù)在區(qū)間上單調(diào)遞減,在上單調(diào)遞增;
(2)若對任意滿足的實數(shù),都有成立,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)為了提高當(dāng)?shù)氐胤浇?jīng)濟(jì)總量,決定引進(jìn)資金對原有的兩個企業(yè)和進(jìn)行改造,計劃每年對兩個企業(yè)共投資500萬元,要求對每個企業(yè)至少投資50萬元.根據(jù)已有經(jīng)驗,改造后企業(yè)的年收益(單位:萬元)和企業(yè)的年收益(單位:萬元)與投入資金(單位:萬元)分別滿足關(guān)系式:,.設(shè)對企業(yè)投資額為(單位:萬元),每年兩個企業(yè)的總收益為(單位:萬元).
(1)求;
(2)試問如何安排兩個企業(yè)的投入資金,才能使兩個企業(yè)的年總收益達(dá)到最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y= cosx的圖象,只需將函數(shù)y= sin(2x+ )的圖象上所有的點的( )
A.橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再向左平行移動 個單位長度
B.橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再向右平行移動 個單位長度
C.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平行移動 個單位長度
D.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向右平行移動 個單位長度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Sn為數(shù)列{ }的前n項和,求證:1≤Sn<4.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com