3.執(zhí)行如圖程序,若輸出的結(jié)果是4,則輸入的x的值是2.

分析 本題考查條件語句,先根據(jù)算法語句寫出分段函數(shù),然后討論x的正負,根據(jù)函數(shù)值求出自變量即可.

解答 解:根據(jù)條件語句可知是計算y=$\left\{\begin{array}{l}{{x}^{2}}&{x≥0}\\{x}&{x<0}\end{array}\right.$,
當x<0時,若輸出的結(jié)果是4,可得x=4,矛盾;
當x≥0時,若輸出的結(jié)果是4,x2=4,解得:x=2.
故答案為:2.

點評 本題主要考查了分段函數(shù),以及條件語句,算法語句是新課標新增的內(nèi)容,在近兩年的新課標地區(qū)高考都考查到了,這啟示我們要給予高度重視,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=x3+bx(x∈R)在點(-1,f(-1))處的切線與直線y=-x+2a平行,則實數(shù)b的值-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某青年教師有一專項課題是進行“學(xué)生數(shù)學(xué)成績與物理成績的關(guān)系”的研究,他調(diào)查了某中學(xué)高二年級800名學(xué)生上學(xué)期期末考試的數(shù)學(xué)和物理成績,把成績按優(yōu)秀和不優(yōu)秀分類得到的結(jié)果是:數(shù)學(xué)和物理都優(yōu)秀的有60人,數(shù)學(xué)成績優(yōu)秀但物理不優(yōu)秀的有140人,物理成績優(yōu)秀但數(shù)學(xué)不優(yōu)秀的有60人.
(1)能否在犯錯概率不超過0.001的前提下認為該中學(xué)學(xué)生的數(shù)學(xué)成績與物理成績有關(guān)?
(2)將上述調(diào)查所得到的頻率視為概率,從全體高二年級學(xué)生成績中,有放回地隨機抽取4名學(xué)生的成績,記抽取的4份成績中數(shù)學(xué)、物理兩科成績恰有一科優(yōu)秀的份數(shù)為X,求X的分布列和期望E(X).
附:
P(K2≥k00.1000.0500.010
k06.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列判斷錯誤的是( 。
A.命題“若am2≤bm2,則a≤b”是假命題
B.直線y=$\frac{1}{2}$x+b不能作為函數(shù)f(x)=$\frac{1}{{e}^{x}}$圖象的切線
C.“若a=1,則直線x+y=0和直線x-ay=0互相垂直”的逆否命題為真命題
D.“f′(x0)=0”是“函數(shù)f(x)在x0處取得極值”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某校擬從高一年級、高二年級、高三年級學(xué)生中抽取一定比例的學(xué)生調(diào)查對“荊馬”(荊門國際馬拉松)的了解情況,則最合理的抽樣方法是( 。
A.抽簽法B.系統(tǒng)抽樣法C.分層抽樣法D.隨機數(shù)法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某網(wǎng)站對“愛飛客”飛行大會的日關(guān)注量x(萬人)與日點贊量y(萬次)進行了統(tǒng)計對比,得到表格如下:
x35679
y23345
由散點圖象知,可以用回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$來近似刻畫它們之間的關(guān)系.
(Ⅰ)求出y關(guān)于x的回歸直線方程,并預(yù)測日關(guān)注量為10萬人時的日點贊量;
(Ⅱ)一個三口之家參加“愛飛客”親子游戲,游戲規(guī)定:三人依次從裝有3個白球和2個紅球的箱子中不放回地各摸出一個球,大人摸出每個紅球得獎金10元,小孩摸出1個紅球得獎金50元.求該三口之家所得獎金總額不低于50元的概率.
參考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$;    參考數(shù)據(jù):$\sum_{i=1}^{5}$xi2=200,$\sum_{i=1}^{5}$xiyi=112.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知直線ax+y-1=0與圓x2+y2-2x-8y+13=0交于A,B兩點.若|AB|=2$\sqrt{3}$,則實數(shù)a的值是( 。
A.-$\frac{4}{3}$B.-$\frac{3}{4}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.定義在R上的奇函數(shù)f(x)滿足在(-∞,0)上為增函數(shù)且f(-1)=0,則不等式x•f(x)>0的解集為( 。
A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若a<b,d<c,并且(c-a)(c-b)<0,(d-a)(d-b)>0,則a、b、c、d的大小關(guān)系是(  )
A.d<a<c<bB.a<c<b<dC.a<d<b<cD.a<d<c<b

查看答案和解析>>

同步練習(xí)冊答案