1.如圖,在四邊形ABCD中,AB=AD=4,BC=CD=$\sqrt{7}$,點(diǎn)E為線(xiàn)段AD上的一點(diǎn).現(xiàn)將△DCE沿線(xiàn)段EC翻折到PEC(點(diǎn)D與點(diǎn)P重合),使得平面PAC⊥平面ABCE,連接PA,PB.
(I)證明:BD⊥平面PAC;
(Ⅱ)若∠BAD=60°,且點(diǎn)E為線(xiàn)段AD的中點(diǎn),求二面角P-AB-C的余弦值.

分析 (Ⅰ)連結(jié)AC,BD交于點(diǎn)O,推導(dǎo)出△ABC≌△ADC,∠DAC=∠BAC,從而AC⊥BD,由此能證明BD⊥平面PAC.
(Ⅱ)以O(shè)為原點(diǎn),以直線(xiàn)OA,OB分別為x軸,y軸,平面PAC內(nèi)過(guò)O且垂直于直線(xiàn)AC的直線(xiàn)為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角P-AB-C的余弦值.

解答 證明:(Ⅰ)連結(jié)AC,BD交于點(diǎn)O,在四邊形ABCD中
∵AB=AD=4,BC=CD=$\sqrt{7}$,AC=AC,
∴△ABC≌△ADC,∴∠DAC=∠BAC,
∴AC⊥BD,
又∵平面PAC⊥平面ABCE,且平面PAC∩平面ABCE=AC,
∴BD⊥平面PAC.
解:(Ⅱ)如圖,以O(shè)為原點(diǎn),以直線(xiàn)OA,OB分別為x軸,y軸,
平面PAC內(nèi)過(guò)O且垂直于直線(xiàn)AC的直線(xiàn)為z軸,建立空間直角坐標(biāo)系,
設(shè)P(x,o,z),由題意得A(2$\sqrt{3}$,0,0),B(0,2,0),C(-$\sqrt{3}$,0,0),E($\sqrt{3}$,-1,0),
∵PE=2,PC=$\sqrt{7}$,
∴$\left\{\begin{array}{l}{(x-\sqrt{3})^{2}+1+{z}^{2}=4}\\{(x+\sqrt{3})^{2}+{z}^{2}=7}\end{array}\right.$,解得x=$\frac{\sqrt{3}}{3}$,z=$\frac{\sqrt{15}}{3}$,∴P($\frac{\sqrt{3}}{3}$,0,$\frac{\sqrt{15}}{3}$),
∴$\overrightarrow{AP}$=(-$\frac{5\sqrt{3}}{3}$,0,$\frac{\sqrt{15}}{3}$),$\overrightarrow{AB}$=(-2$\sqrt{3}$,2,0),
設(shè)平面PAB的法向量為$\overrightarrow{n}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{AP}•\overrightarrow{n}=-\frac{5\sqrt{3}}{3}a+\frac{\sqrt{15}}{3}c=0}\\{\overrightarrow{AB}•\overrightarrow{n}=-2\sqrt{3}a+2b=0}\end{array}\right.$,取a=1,得$\overrightarrow{n}$=(1,$\sqrt{3}$,$\sqrt{5}$),
平面$\overrightarrow{m}$=(0,0,1),
設(shè)二面角P-AB-C的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{5}}{3}$,
∴二面角P-AB-C的余弦值為$\frac{\sqrt{5}}{3}$.

點(diǎn)評(píng) 本題考查線(xiàn)面垂直的證明,考查二面角的余弦值的求法,是中檔題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)復(fù)數(shù)z1=1+i,z2=$\sqrt{3}$+i,其中i為虛數(shù)單位,則$\frac{\overline{{z}_{1}}}{{z}_{2}}$的虛部為( 。
A.-$\frac{{1+\sqrt{3}}}{4}$iB.-$\frac{{1+\sqrt{3}}}{4}$C.$\frac{{\sqrt{3}-1}}{4}$iD.$\frac{{\sqrt{3}-1}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.某幾何體的三視圖如圖所示,該幾何體的表面積為( 。
A.6+$\frac{11+\sqrt{3}}{4}$πB.6+$\frac{13+\sqrt{3}}{2}$πC.6+$\frac{9+\sqrt{5}}{2}$πD.6+$\frac{11+\sqrt{5}}{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖是某幾何體的三視圖,其中正視圖是正方形,側(cè)視圖是矩形,俯視圖是半徑為2的半圓,則該幾何體的表面積等于16+12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=x-$\frac{lnx}{x}$,g(x)=$\frac{m}{x}$(m∈R),對(duì)任意x3≥e,存在0<x1<x2<x3,使得f(x1)=f(x3)=g(x2),則實(shí)數(shù)m的取值范圍為( 。
A.(0,e2-1)B.(e2-1,+∞)C.(0,e2+1)D.(e2+1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某幾何體的三視圖如圖,則該幾何體的表面積為( 。
A.16+$\frac{4}{3}$πB.38+4πC.40+πD.40+4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖甲,設(shè)正方形ABCD的邊長(zhǎng)為3,點(diǎn)E,F(xiàn)分別在AB,CD上,并且滿(mǎn)足AE=2EB,CF=2FD,如圖乙,將直角梯形AEFD沿EF折到A1EFD1的位置,使點(diǎn)A1在平面EBCF上的射影G恰好在BC上.M點(diǎn)為EA1的中點(diǎn).
(1)證明:BM∥平面CD1F;
(2)求二面角M-BF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知圓C:x2+y2-6x-8y+24=0和兩點(diǎn)A(-m,0),B(m,0)(m>0),若圓C上存在點(diǎn)P,使得$\overrightarrow{AP}•\overrightarrow{BP}=0$,則m的最大值與最小值之差為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,三棱錐P-ABC中,PA⊥平面ABC,PA=AB=1,BC=$\sqrt{3}$,AC=2.
(1)求證:BC⊥平面PAB;
(2)若AE⊥PB于點(diǎn)E,AF⊥PC于點(diǎn)F,求四棱錐A-BCFE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案