【題目】已知(m,n為常數(shù)),在處的切線方程為

(Ⅰ)求的解析式并寫出定義域;

(Ⅱ)若,使得對(duì)上恒有成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)若有兩個(gè)不同的零點(diǎn),求證:.

【答案】(Ⅰ),x∈(0,+∞);(Ⅱ);(Ⅲ)詳見(jiàn)解析.

【解析】

(Ⅰ)利用導(dǎo)數(shù)的幾何意義意義求得m,n的值,根據(jù)對(duì)數(shù)函數(shù)的定義得到函數(shù)定義域;

(Ⅱ)fx)在[,1]上的最小值為f1)=1,只需t3t22at+21,即對(duì)任意的上恒成立,構(gòu)造函數(shù)mt),利用導(dǎo)數(shù)求出mt)的最大值,即可求得結(jié)論;

(Ⅲ)不妨設(shè)x1x20,得到gx1)=gx2)=0,根據(jù)相加和相減得到,再利用分析法,構(gòu)造函數(shù),求出函數(shù)單調(diào)性和函數(shù)的最小值,問(wèn)題得以證明.

解:(Ⅰ)由f(x)=+nlnx可得,

由條件可得,把x=-1代入x+y=2可得,y=1,

,∴m=2,,∴,x∈(0,+∞),

(Ⅱ)由(Ⅰ)知f(x)在上單調(diào)遞減,∴f(x)在上的最小值為f(1)=1,

故只需t3-t2-2at+2≤1,即對(duì)任意的上恒成立,

,

易求得mt)在單調(diào)遞減,[1,2]上單調(diào)遞增,

,,∴2a≥m(t)max=g(2),∴,即a的取值范圍為

(Ⅲ)∵,不妨設(shè)x1x2>0,

gx1)=gx2)=0,

,,相加可得,相減可得,

由兩式易得:;要證,即證明,即證:,需證明成立,令,則t>1,于是要證明,構(gòu)造函數(shù),∴,故t)在(1,+∞)上是增函數(shù),

t)>(1)=0,∴,故原不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.

(1)若A∩B={2},求實(shí)數(shù)a的值;

(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),曲線處的切線斜率為0

求b;若存在使得,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱錐中,底面,,,的中點(diǎn).

(1)求證:;

(2)若二面角的大小為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市交管部門為了宣傳新交規(guī)舉辦交通知識(shí)問(wèn)答活動(dòng),隨機(jī)對(duì)該市15~65歲的人群抽樣,回答問(wèn)題統(tǒng)計(jì)結(jié)果如圖表所示.

組別

分組

回答正確的人數(shù)

回答正確的人數(shù)占本組的概率

第1組

[15,25)

5

0.5

第2組

[25,35)

0.9

第3組

[35,45)

27

第4組

[45,55)

0.36

第5組

[55,65)

3

(1)分別求出的值;

(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?

(3)在(2)的前提下,決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式的解集為.

1)求;(2)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右頂點(diǎn)分別為,左、右焦點(diǎn)分別為,,離心率為,點(diǎn),為線段的中點(diǎn).

)求橢圓的方程.

)若過(guò)點(diǎn)且斜率不為的直線與橢圓交于、兩點(diǎn),已知直線相交于點(diǎn),試判斷點(diǎn)是否在定直線上?若是,請(qǐng)求出定直線的方程;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】到2020年,我國(guó)將全面建立起新的高考制度,新高考采用模式,其中語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣、愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門(6選3)參加考試,滿分各100分.為了順利迎接新高考改革,某學(xué)校采用分層抽樣的方法從高一年級(jí)1000名(其中男生550名,女生450名)學(xué)生中抽取了名學(xué)生進(jìn)行調(diào)查.

(1)已知抽取的名學(xué)生中有女生45名,求的值及抽取的男生的人數(shù).

(2)該校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目,且只能選擇一個(gè)科目),得到如下列聯(lián)表.

選擇“物理”

選擇“地理”

總計(jì)

男生

10

女生

25

總計(jì)

(i)請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有以上的把握認(rèn)為選擇科目與性別有關(guān)系.

(ii)在抽取的選擇“地理”的學(xué)生中按性別分層抽樣抽取6名,再?gòu)倪@6名學(xué)生中抽取2名,求這2名中至少有1名男生的概率.

附:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校在2016年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如表所示.

組號(hào)

分組

頻數(shù)

頻率

1

5

2

n

3

30

p

4

20

5

10

合計(jì)

100

1)求頻率分布表中n,p的值,完善頻率分布直方圖并估計(jì)該組數(shù)據(jù)的中位數(shù)保留l位小數(shù);

2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第3、45組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,學(xué)校決定從這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有1名學(xué)生被甲考官面試的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案