分析 (1)聯(lián)立方程組,消去y得關(guān)于x的一元二次方程,利用中點坐標公式以及兩點間的距離公式求出半徑和圓心即可得到結(jié)論.
(2)求出對應(yīng)的斜率,結(jié)合根與系數(shù)之間的關(guān)系代入進行求解即可.
解答 解:(1)將直線y=$\frac{1}{2}$x+2代入$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1得x2-4x-14=0,
設(shè)A(x1,y1),B(x2,y2),
則x1+x2=4,x1x2=-14,
則AB的中點C的橫坐標x=$\frac{{x}_{1}+{x}_{2}}{2}=\frac{4}{2}=2$,縱坐標y=$\frac{1}{2}×2+2=1+2=3$,即圓心C(2,3),
|AB|=$\sqrt{(1+{k}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{(1+\frac{1}{4})×(16+4×14)}$=$\sqrt{\frac{5}{4}×72}$=3$\sqrt{10}$,
則半徑R=$\frac{1}{2}|AB|=\frac{3\sqrt{10}}{2}$,
則圓的標準方程為(x-2)2+(y-3)2=$\frac{45}{2}$.
(2)若OA、OB所在直線的斜率分別是kOA、kOB,
則kOA=$\frac{{y}_{1}}{{x}_{1}}$,kOB=$\frac{{y}_{2}}{{x}_{2}}$,
則kOA•kOB=$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=$\frac{(\frac{1}{2}{x}_{1}+2)(\frac{1}{2}{x}_{2}+2)}{{x}_{1}{x}_{2}}$=$\frac{\frac{1}{4}{x}_{1}{x}_{2}+{x}_{1}+{x}_{2}+4}{{x}_{1}{x}_{2}}$=$\frac{-14×\frac{1}{4}+4+4}{-14}$=-$\frac{9}{28}$.
點評 本題主要考查直線和雙曲線位置關(guān)系的應(yīng)用,利用轉(zhuǎn)化法轉(zhuǎn)化為一元二次方程,結(jié)合根與系數(shù)之間的關(guān)系是解決本題的關(guān)鍵.考查學(xué)生的運算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,3) | B. | [0,+∞) | C. | [3,+∞) | D. | (-∞,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{36}$ | B. | $\frac{1}{24}$ | C. | $\frac{1}{12}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com