A. | 25π | B. | 26π | C. | 27π | D. | 28π |
分析 正確作出圖形,利用勾股定理建立方程,求出四面體的外接球的半徑,即可求出四面體的外接球的表面積.
解答 解:如圖所示,∠AFC=120°,∠AFE=60°,AF=$\frac{\sqrt{3}}{2}×2\sqrt{3}$=3,
∴AE=$\frac{3\sqrt{3}}{2}$,EF=$\frac{3}{2}$
設(shè)OO′=x,則
∵O′B=2,O′F=1,
∴由勾股定理可得R2=x2+4=($\frac{3}{2}$+1)2+($\frac{3\sqrt{3}}{2}$-x)2,
∴R2=7,
∴四面體的外接球的表面積為4πR2=28π,
故選:D.
點(diǎn)評(píng) 本題考查四面體的外接球的表面積,考查學(xué)生的計(jì)算能力,正確求出四面體的外接球的半徑是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | an=$\frac{n-1}{n+1}$ (n∈N*) | B. | an=$\frac{n-1}{2n+1}$ (n∈N*) | ||
C. | an=$\frac{2n}{2n+1}$ (n∈N*) | D. | an=$\frac{2(n-1)}{2n-1}$ (n∈N*) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
患。ㄈ藬(shù)) | 不患病(人數(shù)) | 合計(jì) | |
吸煙(人數(shù)) | a | b | a+b |
不吸煙(人數(shù)) | c | d | c+d |
合計(jì) | a+c | b+d | n=a+b+c+d |
P(χ2≥χ0) | 0.5 | 0.4 | 0.25 | 0.15 | 0.10 |
χ0 | 0.455 | 0.708 | 1.323 | 2.702 | 2.706 |
P(χ2≥χ0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
χ0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π-2}{2}$ | C. | $\frac{π}{6}$ | D. | $\frac{4-π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com