6.已知邊長(zhǎng)為$2\sqrt{3}$的菱形ABCD中,∠BAD=60°,沿對(duì)角線(xiàn)BD折成二面角A-BD-C為120°的四面體ABCD,則四面體的外接球的表面積為( 。
A.25πB.26πC.27πD.28π

分析 正確作出圖形,利用勾股定理建立方程,求出四面體的外接球的半徑,即可求出四面體的外接球的表面積.

解答 解:如圖所示,∠AFC=120°,∠AFE=60°,AF=$\frac{\sqrt{3}}{2}×2\sqrt{3}$=3,
∴AE=$\frac{3\sqrt{3}}{2}$,EF=$\frac{3}{2}$
設(shè)OO′=x,則
∵O′B=2,O′F=1,
∴由勾股定理可得R2=x2+4=($\frac{3}{2}$+1)2+($\frac{3\sqrt{3}}{2}$-x)2,
∴R2=7,
∴四面體的外接球的表面積為4πR2=28π,
故選:D.

點(diǎn)評(píng) 本題考查四面體的外接球的表面積,考查學(xué)生的計(jì)算能力,正確求出四面體的外接球的半徑是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.?dāng)?shù)列0,$\frac{2}{3}$,$\frac{4}{5}$,$\frac{6}{7}$,…的一個(gè)通項(xiàng)公式為( 。
A.an=$\frac{n-1}{n+1}$  (n∈N*B.an=$\frac{n-1}{2n+1}$  (n∈N*
C.an=$\frac{2n}{2n+1}$ (n∈N*D.an=$\frac{2(n-1)}{2n-1}$ (n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的表面積是12+4$\sqrt{2}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.下列命題中真命題的是(1)(2)(3)(4)  (寫(xiě)出所有真命題的序號(hào))
(1)命題“若x=3,則x2-7x+12=0”及其逆命題,否命題,逆否命題中正確的有2個(gè).
(2)已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為12.
(3)回歸分析是對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法.
(4)已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,則$\frac{c+1}{a+b+c+1}$<$\frac{a+b+1}{2(a+b)+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知正三角形ABC邊長(zhǎng)為2,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為$\sqrt{3}$,此時(shí)四面體ABCD的外接球的表面積為7π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.有五張卡片,它們的正、反面分別寫(xiě)著0與1,2與3,4與5,6與7,8與9,將其中任意三張并排放在一起組成三位數(shù),共可組成多少個(gè)不同的三位數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如表為吸煙與患病之間的二聯(lián)表:
患。ㄈ藬(shù))不患病(人數(shù))合計(jì)
吸煙(人數(shù))aba+b
不吸煙(人數(shù))cdc+d
合計(jì)a+cb+dn=a+b+c+d
根據(jù)如表,回答下列問(wèn)題:
(Ⅰ)試根據(jù)上表,用含a,b,c,d,n的式子表示人群中患病的頻率為$\frac{a+c}{n}$;在(a+b)個(gè)人中患病的頻數(shù)為$\frac{(a+b)(a+c)}{n}$;在(a+b)個(gè)人中不患病的頻數(shù)為$\frac{(a+b)(b+d)}{n}$;在(c+d)個(gè)人中患病的頻數(shù)為$\frac{(a+c)(c+d)}{n}$;在(c+d)人中不患病的頻數(shù)為$\frac{(b+d)(c+d)}{n}$.
(Ⅱ)根據(jù)χ2=$\frac{n(ad-bc)^{2}}{(a+b)(b+d)(c+d)(a+c)}$以及臨界值表,若a=40,b=10,c=30,d=20,能否有97.5%以上的把握認(rèn)為吸煙與患病有關(guān)?
P(χ2≥χ00.50.40.250.150.10
χ00.4550.7081.3232.7022.706
P(χ2≥χ00.050.0250.0100.0050.001
χ03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)不等式組$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離小于1的概率是( 。
A.$\frac{π}{4}$B.$\frac{π-2}{2}$C.$\frac{π}{6}$D.$\frac{4-π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)變量x,y滿(mǎn)足$\left\{\begin{array}{l}x+y≤1\\ x-y≤1\\ x≥0\end{array}\right.$,則x+2y的最小值為-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案