已知函數(shù),且.
(1)求的值,并確定函數(shù)的定義域;
(2)用定義研究函數(shù)在范圍內(nèi)的單調(diào)性;
(3)當(dāng)時,求出函數(shù)的取值范圍.
(1),定義域:;(2)上是減函數(shù),上是增函數(shù);
(3).
解析試題分析:(1)直接代入列出關(guān)于的方程即可;(2)要正確理解單調(diào)性的定義,明確用定義研究(或證明)函數(shù)的單調(diào)性的格式過程,設(shè),然后比較和的大小,通常是作差(也可),確定差的正負;(3)由(2)中的單調(diào)性,可容易求出函數(shù)的取值范圍.
試題解析:(1),定義域:; 3分
(2)令,則,
6分
故當(dāng)時,;當(dāng)時,,
∴函數(shù)在上單調(diào)減,在上單調(diào)增; 8分
(3)由(2)及函數(shù)為奇函數(shù)知,函數(shù)在為增函數(shù),在為減函數(shù),故當(dāng)時,, 10分
,
∴當(dāng)時,的取值范圍是. 12
考點:(1)函數(shù)值的意義;(2)函數(shù)的單調(diào)性的定義;(3)函數(shù)的值域.
科目:高中數(shù)學(xué) 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)時,車流速度是車流密度x的一次函數(shù).
(1)當(dāng)時,求函數(shù)的表達式;
(2)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀點的車輛數(shù),單位:輛/每小時)可以達到最大,并求出最大值(精確到1輛/小時)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù).
(l)求的單調(diào)區(qū)間和極值;
(2)若對任意恒成立,求實數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若,判斷函數(shù)在上的單調(diào)性并用定義證明;
(2)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)是定義在[-3,3]上的奇函數(shù),且當(dāng)x∈[0,3]時,f(x)=x|x-2|
⑴在平面直角坐標(biāo)系中,畫出函數(shù)f(x)的圖象
⑵根據(jù)圖象,寫出f(x)的單調(diào)增區(qū)間,同時寫出函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)當(dāng)時,證明:函數(shù)不是奇函數(shù);
(2)設(shè)函數(shù)是奇函數(shù),求與的值;
(3)在(2)條件下,判斷并證明函數(shù)的單調(diào)性,并求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于定義域為的函數(shù),如果存在區(qū)間,同時滿足:
①在內(nèi)是單調(diào)函數(shù);②當(dāng)定義域是,值域也是,則稱是函數(shù)
的“好區(qū)間”.
(1)設(shè)(其中且),判斷是否存在“好區(qū)間”,并
說明理由;
(2)已知函數(shù)有“好區(qū)間”,當(dāng)變化時,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com