【題目】如圖,在三棱錐中,已知,平面平面,點(diǎn)分別是的中點(diǎn),,連接.

1)若,并異面直線所成角的余弦值的大;

2)若二面角的余弦值的大小為,求的長(zhǎng).

【答案】12

【解析】

1)連接OC,以點(diǎn)O為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,求出,利用向量法求出異面直線所成角的余弦值;

(2)設(shè),證得是平面PAB的一個(gè)法向量,再求出平面PBC的一個(gè)法向量,從而可求出,再用勾股定理求出

解:(1)連接OC,

∵平面PAB⊥平面ABC,POAB,∴PO⊥平面ABC,所以POOC,

AC=BC,點(diǎn)OAB的中點(diǎn),

OCAB,

如圖,以點(diǎn)O為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,

,

,,,

,

從而

,

∴異面直線PACD所成角的余弦值的大小為;

2)設(shè),則.∵ POOCOCAB,∴OC⊥平面PAB

從而是平面PAB的一個(gè)法向量,

不妨設(shè)平面PBC的一個(gè)法向量為,

,

不妨令x=1,則y=1,,則

由已知,得,化簡(jiǎn),得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若在定義域上不單調(diào),求的取值范圍;

(2)設(shè)分別是的極大值和極小值,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx=ax2-2xex,其中a≥0

1)當(dāng)a=時(shí),求fx)的極值點(diǎn);

2)若fx)在[-11]上為單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系平面上的一列點(diǎn),,…,,記為,若由構(gòu)成的數(shù)列滿足,,其中為與軸正方向相同的單位向量,則稱點(diǎn)列.

1)判斷,,…,,是否為點(diǎn)列,并說(shuō)明理由;

2)若點(diǎn)列.且點(diǎn)在點(diǎn)的右上方,(即)任取其中連續(xù)三點(diǎn),,判斷的形狀(銳角三角形,直角三角形,鈍角三角形),并給予證明;

3)若點(diǎn)列,正整數(shù),滿足.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間和極值;

(2)設(shè)的導(dǎo)函數(shù),若對(duì)任意的恒成立,求的取值范圍;

(3)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲、乙兩種樹(shù)苗中各抽測(cè)了10株樹(shù)苗的高度,其莖葉圖如圖.根據(jù)莖葉圖,下列描述正確的是(

A.甲種樹(shù)苗的平均高度大于乙種樹(shù)苗的平均高度,且甲種樹(shù)苗比乙種樹(shù)苗長(zhǎng)得整齊

B.甲種樹(shù)苗的平均高度大于乙種樹(shù)苗的平均高度,但乙種樹(shù)苗比甲種樹(shù)苗長(zhǎng)得整齊

C.乙種樹(shù)苗的平均高度大于甲種樹(shù)苗的平均高度,且乙種樹(shù)苗比甲種樹(shù)苗長(zhǎng)得整齊

D.乙種樹(shù)苗的平均高度大于甲種樹(shù)苗的平均高度,但甲種樹(shù)苗比乙種樹(shù)苗長(zhǎng)得整齊

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

如圖,已知四棱錐的底面為菱形,且 .

I)求證:平面 平面;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】檳榔原產(chǎn)于馬來(lái)西亞,中國(guó)主要分布在云南、海南及臺(tái)灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實(shí)作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國(guó)際癌癥研究機(jī)構(gòu)列為致癌物清單Ⅰ類致癌物.云南某民族中學(xué)為了解,兩個(gè)少數(shù)民族班學(xué)生咀嚼檳榔的情況,分別從這兩個(gè)班中隨機(jī)抽取5名同學(xué)進(jìn)行調(diào)查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個(gè)位數(shù)字).

(1)從班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過(guò)19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過(guò)21的數(shù)據(jù)記為,求的概率;

(2)從所有咀嚼檳榔顆數(shù)在20顆以上(包含20顆)的同學(xué)中隨機(jī)抽取3人,求被抽到班同學(xué)人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱中,,

1)求證:平面;

2)現(xiàn)將與四棱柱形狀和大小完全相同的兩個(gè)四棱柱拼成一個(gè)新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問(wèn)共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為,寫(xiě)出的解析式;(直接寫(xiě)出答案,不必說(shuō)明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案