4.如圖,正方形ABCD的邊長(zhǎng)為1,E,F(xiàn)分別為BC,CD上異于端點(diǎn)的點(diǎn),△ECF的周長(zhǎng)為2,∠BAE=α,∠DAF=β.
(Ⅰ)當(dāng)E為BC中點(diǎn)時(shí),求tan(α+β)的值;
(Ⅱ)求$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值.

分析 (Ⅰ)根據(jù)解直角三角形,和兩角和正弦公式,即可求出,
(Ⅱ)根據(jù)解三角形和三角形的周長(zhǎng)公式,能求出a+β=$\frac{π}{4}$,再根據(jù)向量的數(shù)量積,以及三角函數(shù)的性質(zhì)即可求出

解答 解:(Ⅰ)∵E為BC中點(diǎn),
∴CE=$\frac{1}{2}$,
在Rt△ECF中,設(shè)CF=t,
則 EF=$\sqrt{{t}^{2}+(\frac{1}{2})^{2}}$,
∵△ECF的周長(zhǎng)為2,
∴$\frac{1}{2}$+t+=$\sqrt{{t}^{2}+(\frac{1}{2})^{2}}$=2,
解得t=$\frac{2}{3}$,即CF=$\frac{2}{3}$;                     
在Rt△ABE中,AB=1,BE=$\frac{1}{2}$,∠BAE=α,
∴tanα=$\frac{1}{2}$,
在Rt△ADF中,AD=1,DF=$\frac{1}{3}$,∠DAF=β,
∴tanβ=$\frac{1}{3}$,…(2分)
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=1   …(3分)
(Ⅱ)在Rt△ABE中,AB=1,∠BAE=α,
∴BE=tanα∈(0,1),AE=$\frac{1}{cosα}$,
在Rt△ADF中,AD=1,∠DAF=β,
∴DF=tanβ∈(0,1),AF=$\frac{1}{cosβ}$  …(4分)
∴在Rt△ECF中,CE=1-tanα,CF=1-tanβ,
∴EF=$\sqrt{(1-tanα)^{2}+(1-tanβ)^{2}}$,
∵△ECF的周長(zhǎng)為2,
∴1-tanα+1-tanβ+$\sqrt{(1-tanα)^{2}+(1-tanβ)^{2}}$=2…(5分)
化簡(jiǎn)得 tanα+tanβ=1-tanαtanβ,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=1   …(6分)
又∵0<α+β<$\frac{π}{2}$,
∴a+β=$\frac{π}{4}$,…(7分)
∴∠EAF=$\frac{π}{2}$-(α+β)=$\frac{π}{4}$
∴$\overrightarrow{AE}$•$\overrightarrow{AF}$=|$\overrightarrow{AE}$|•|$\overrightarrow{AF}$|•cos∠EAF=$\frac{1}{cosα}$•$\frac{1}{cosβ}$•cos$\frac{π}{4}$ …(8分)
=$\frac{\sqrt{2}}{2cosαcos(\frac{π}{4}-α)}$=$\frac{2}{\sqrt{2}sin(2α+\frac{π}{4})+1}$  …(10分)
∵0<α<$\frac{π}{4}$,
∴$\frac{π}{4}$<2α+$\frac{π}{4}$<$\frac{3π}{4}$,…(11分)
∴當(dāng) 2α+$\frac{π}{4}$=$\frac{π}{2}$,即a=$\frac{π}{8}$時(shí),sin(2α+$\frac{π}{4}$)取得最大值1,
即$\overrightarrow{AE}•\overrightarrow{AF}$取得最小值$\frac{2}{\sqrt{2}+1}$=2($\sqrt{2}$-1).…(12分)

點(diǎn)評(píng) 本題考查了解三角形的有關(guān)問(wèn)題,以及三角函數(shù)的化簡(jiǎn),以及向量的數(shù)量積公式和正弦函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2,x>0}\\{0,x≤0}\end{array}\right.$,則不等式2-x≥(2x-1)f(x)的解集為(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=-x2+ax(a∈R,b∈R),對(duì)任意實(shí)數(shù)x都有f(1-x)=f(1+x)成立,若存在x∈[-1,1]時(shí),使得f(x)-b=0有解,則實(shí)數(shù)b的取值范圍是(  )
A.(-1,0)B.[-3,1]C.(-3,1)D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=|$\overrightarrow$|=1,則|$\overrightarrow{a}$+$\overrightarrow$|等于( 。
A.3B.$\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若tanα+$\frac{1}{tanα}$=$\frac{5}{2}$,α∈(0,$\frac{π}{4}$),則cos(2α-$\frac{π}{4}$)的值為$\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)a=log37,b=21.1,c=0.83.1,則a,b,c的大小關(guān)系為c<a<b(用<號(hào)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.圓錐的母線與底面圓的直徑均為2,則該圓錐的側(cè)面積為2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.用秦九韶算法求多項(xiàng)式f(x)=7x5+5x4+3x3+x2+x+2在x=2的值時(shí),令v0=a5,v1=v0x+5,…,v5=v4x+2,則v3的值為83.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.關(guān)于x的方程cos2x+sinx+a=0在0<x≤$\frac{π}{2}$上有解,則a的取值范圍是[-$\frac{5}{4}$,-1].

查看答案和解析>>

同步練習(xí)冊(cè)答案