【題目】已知函數(shù),其中

(1)討論函數(shù)零點(diǎn)的個(gè)數(shù);

(2)若不等式在區(qū)間)上的解集為非空集合,求實(shí)數(shù)的取值范圍.

【答案】(1)見解析;(2)

【解析】

(1)先求定義域,再求導(dǎo),對(duì)a進(jìn)行分類討論,然后根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系即可求出單調(diào)區(qū)間. (2)由題意可得在上存在使 成立,即求的最小值小于等于,對(duì)a進(jìn)行分類討論,求出的最值,即可解出a的范圍.

(1)函數(shù)的定義域?yàn)?/span>,

①當(dāng),即時(shí),

,上單調(diào)遞增,

②當(dāng),即時(shí),可知函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

此時(shí)的最小值為

,即時(shí),恒大于0,此時(shí)函數(shù)沒有零點(diǎn);

,即時(shí),函數(shù)有一個(gè)零點(diǎn);

,即時(shí),函數(shù)有兩個(gè)零點(diǎn).

綜上可知,當(dāng)時(shí),函數(shù)沒有零點(diǎn);

當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn);

當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn).

(2)由(1)可知,當(dāng)時(shí),

函數(shù)上單調(diào)遞增,

所以只需要,

,顯然成立,

當(dāng),即時(shí),

函數(shù)上單調(diào)遞減,此時(shí)需要,

,不等式無(wú)解;

當(dāng),即時(shí),

上單調(diào)遞增,所以只需要

,顯然成立,

;

當(dāng),即時(shí),

上單調(diào)遞減,在上單調(diào)遞增,

此時(shí)只需,解得.

綜上可知實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的值為4,則判斷框中應(yīng)填入的條件是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , .

(Ⅰ)證明: ;

(Ⅱ)若棱錐的體積為,求該四棱錐的側(cè)面積.

【答案】(Ⅰ)證明見解析;(Ⅱ) .

【解析】試題分析】(I)的中點(diǎn)為,連接,.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質(zhì)求得的值,進(jìn)而求得面積.

試題解析】

證明:(Ⅰ)取的中點(diǎn)為,連接,

為等邊三角形,∴.

底面中,可得四邊形為矩形,∴,

,∴平面,

平面,∴.

,所以.

(Ⅱ)由面,,

平面,所以為棱錐的高,

,知,

.

由(Ⅰ)知,,∴.

.

,可知平面,∴,

因此.

,

的中點(diǎn),連結(jié),則,

.

所以棱錐的側(cè)面積為.

型】解答
結(jié)束】
20

【題目】已知圓經(jīng)過橢圓 的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn) , 是橢圓上的兩點(diǎn),它們?cè)?/span>軸兩側(cè),且的平分線在軸上, .

(Ⅰ)求橢圓的方程;

(Ⅱ)證明:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三統(tǒng)考結(jié)束后,分別從喜歡數(shù)學(xué)和不喜歡數(shù)學(xué)的學(xué)生中各隨機(jī)抽取了10人的成績(jī),分?jǐn)?shù)都是整數(shù),得到如下莖葉圖,但是喜歡數(shù)學(xué)和不喜歡數(shù)學(xué)的各缺失了一個(gè)數(shù)據(jù).若已知不喜歡數(shù)學(xué)的10人成績(jī)的中位數(shù)為75,且已知喜歡數(shù)學(xué)的10人中所缺失成績(jī)是85分以上,但是不高于喜歡數(shù)學(xué)的10人的平均分.不喜歡數(shù)學(xué)和喜歡數(shù)學(xué)缺失的數(shù)據(jù)分別是____,____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為落實(shí)國(guó)家“精準(zhǔn)扶貧”政策,讓市民吃上放心蔬菜,某企業(yè)于2017年在其扶貧基地投入100萬(wàn)元研發(fā)資金,用于蔬菜的種植及開發(fā),并計(jì)劃今后十年內(nèi)在此基礎(chǔ)上,每年投入的資金比上一年增長(zhǎng)

(1)寫出第年(2018年為第一年)該企業(yè)投入的資金數(shù)(萬(wàn)元)與的函數(shù)關(guān)系式,并指出函數(shù)的定義域

(2)該企業(yè)從第幾年開始(2018年為第一年),每年投入的資金數(shù)將超過200萬(wàn)元?(參考數(shù)據(jù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,命題方程表示焦點(diǎn)在軸上的橢圓,命題方程表示雙曲線.

(1)若命題是真命題,求實(shí)數(shù)的范圍;

(2)若命題“”為真命題,“”是假命題,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,AB2,BC1,EDC的中點(diǎn),F為線段EC上一動(dòng)點(diǎn).現(xiàn)將AFD沿AF折起,使平面ABD平面ABC.在平面ABD內(nèi)過點(diǎn)DDKAB,K為垂足.設(shè)AKt,則t的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品在近30天內(nèi)每件的銷售價(jià)格p()與時(shí)間t()的函數(shù)關(guān)系是該商品的日銷售量Q()與時(shí)間t()的函數(shù)關(guān)系是Q=-t40(0<t≤30tN)

(1)求這種商品的日銷售金額的解析式;

(2)求日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BCAB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,NPC的中點(diǎn).

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案