13.已知點(diǎn)A(3,0),點(diǎn)P在拋物線y2=4x上,過(guò)點(diǎn)P的直線與直線x=-1垂直相交于點(diǎn)B,|PB|=|PA|,則cos∠APB的值為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.-$\frac{1}{2}$D.-$\frac{1}{3}$

分析 求出P的坐標(biāo),可知△APB中BP=3,AP=3,AB=2$\sqrt{6}$,在△APB中,由余弦定理即可得cos∠APB.

解答 解:由題意,可知F(1,0),
∴|PB|=|PF|=PA|,
∴P的橫坐標(biāo)為2,不妨取點(diǎn)P(2,2$\sqrt{2}$),
又點(diǎn)P在拋物線y2=4x上,過(guò)點(diǎn)P的直線與直線x=-1垂直相交于點(diǎn)B,
∴B(-1,2$\sqrt{2}$)
∵已知點(diǎn)A(3,0),可知△APB中BP=3,AP=3,AB=2$\sqrt{6}$,
∴在△APB中,由余弦定理可得cos∠APB=$\frac{A{P}^{2}+B{P}^{2}-A{B}^{2}}{2•AP•BP}$=$\frac{{3}^{2}+{3}^{2}-(2\sqrt{6})^{2}}{2×3×3}$=-$\frac{1}{3}$,
故選D.

點(diǎn)評(píng) 本題考查拋物線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,上頂點(diǎn)為A,短軸長(zhǎng)為2,O為原點(diǎn),直線AF與橢圓C的另一個(gè)交點(diǎn)為B,且△AOF的面積是△BOF的面積的3倍.
(1)求橢圓C的方程;
(2)如圖,直線l:y=kx+m與橢圓C相交于P,Q兩點(diǎn),若在橢圓C上存在點(diǎn)R,使OPRQ為平行四邊形,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.動(dòng)點(diǎn)P在拋物線x2=2y上,過(guò)點(diǎn)P作PQ垂直于x軸,垂足為Q,設(shè)$\overrightarrow{PM}=\frac{1}{2}\overrightarrow{PQ}$.
(Ⅰ)求點(diǎn)M的軌跡E的方程;
(Ⅱ)設(shè)點(diǎn)S(-4,4),過(guò)N(4,5)的直線l交軌跡E于A,B兩點(diǎn),設(shè)直線SA,SB的斜率分別為k1,k2,求|k1-k2|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.f(x)=sin(x+$\frac{π}{6}$)+cos(x+$\frac{π}{6}$),求f(x)的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知點(diǎn)F為拋物線C:x2=4y的焦點(diǎn),A,B,D為拋物線C上三點(diǎn),且點(diǎn)A在第一象限,直線AB經(jīng)過(guò)點(diǎn)F,BD與拋物線C在在點(diǎn)A處的切線平行,點(diǎn)M為BD的中點(diǎn)
(Ⅰ)求證:AM與y軸平行;
(Ⅱ)求△ABD面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知直線l:3x+4y+10=0,以C(2,1)為圓心的圓截直線l所得的弦長(zhǎng)為6.
(1)求圓C的方程;
(2)是否存在斜率為1的直線m,使得以直線m被圓C截得的弦長(zhǎng)AB為直徑的圓經(jīng)過(guò)原點(diǎn)?若存在,寫出直線方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知拋物線y2=8x的焦點(diǎn)是F,過(guò)焦點(diǎn)F作直線交準(zhǔn)線l于點(diǎn)P,交拋物線于點(diǎn)Q,且$\overrightarrow{PF}$=2$\overrightarrow{FQ}$,則|$\overrightarrow{PF}$|=( 。
A.6B.12C.24D.38

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的四個(gè)頂點(diǎn)構(gòu)成面積為4的四邊形,C的離心率為$\frac{\sqrt{3}}{2}$.
(I)求橢圓C的方程;
(Ⅱ)橢圓C的上、下頂點(diǎn)分別為A,B,過(guò)點(diǎn)T(t,2)(t≠0)的直線TA,TB分別與C相交于P,Q兩點(diǎn),若△TAB的面積是△TPQ的面積的λ倍,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,a=$\sqrt{3}$,b=$\sqrt{2}$,1+2cos(B+C)=0,則BC邊上的高為$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案