分析 取AB的中點G,連接DG,CG,利用向量相等將$\overrightarrow{AE}$,$\overrightarrow{BF}$分別用向量$\overrightarrow{AB}$,$\overrightarrow{AD}$表示,然后進行向量的乘法運算即可.
解答 解:取AB的中點G,連接DG,CG,如圖
則DG∥BC,所以$\overrightarrow{BC}=\overrightarrow{GD}=\overrightarrow{AD}-\overrightarrow{AG}=\overrightarrow{AD}-\frac{1}{2}\overrightarrow{AB}$,
所以$\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BE}=\overrightarrow{AB}+\frac{2}{3}\overrightarrow{BC}$=$\overrightarrow{AB}+\frac{2}{3}(\overrightarrow{AD}-\frac{1}{2}\overrightarrow{AB})$=$\frac{2}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$,
所以$\overrightarrow{BF}=\overrightarrow{AF}-\overrightarrow{AB}=\frac{1}{2}\overrightarrow{AE}-\overrightarrow{AB}$=$\frac{1}{2}(\frac{2}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD})-\overrightarrow{AB}=-\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AD}$,
所以$\overrightarrow{AE}•\overrightarrow{BF}=\frac{2}{3}(\overrightarrow{AB}+\overrightarrow{AD})•(-\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AD}$$)=-\frac{4}{9}{\overrightarrow{AB}}^{2}+\frac{2}{9}{\overrightarrow{AD}}^{2}$=$-\frac{4}{9}{\overrightarrow{AB}}^{2}+\frac{2}{9}{\overrightarrow{AD}}^{2}$=$-\frac{4}{9}×{2}^{2}+\frac{2}{9}×{1}^{2}=-\frac{14}{9}$;
故答案為:$-\frac{14}{9}$.
點評 本題考查了平面向量的三角形法則以及向量的乘法運算,關鍵是將所求分別用向量$\overrightarrow{AB}$,$\overrightarrow{AD}$表示出來,再進行運算.
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | $2-log_{0.3}^{0.1}$ | D. | 2-30.1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | A、M、O三點共線 | B. | M、O、A1、A四點共面 | ||
C. | A、O、C、M四點共面 | D. | B、B1、O、M四點共面 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | p∨(¬q) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com