【題目】《最強(qiáng)大腦》是江蘇衛(wèi)視引進(jìn)德國(guó)節(jié)目《Super Brain》而推出的大型科學(xué)競(jìng)技真人秀節(jié)目,節(jié)目籌備組透露挑選選手的方式:不但要對(duì)空間感知、照相式記憶進(jìn)行考核,而且要讓選手經(jīng)過(guò)名校最權(quán)威的腦力測(cè)試,分以上才有機(jī)會(huì)入圍,某重點(diǎn)高校準(zhǔn)備調(diào)查腦力測(cè)試成績(jī)是否與性別有關(guān),在該高校隨機(jī)抽取男、女學(xué)生各名,然后對(duì)這名學(xué)生進(jìn)行腦力測(cè)試,規(guī)定:分?jǐn)?shù)不小于分為“入圍學(xué)生”,分?jǐn)?shù)小于分為“未入圍學(xué)生”,已知男生入圍人,女生未入圍人,
(1)根據(jù)題意,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有以上的把握認(rèn)為腦力測(cè)試后是否為“入圍學(xué)生”與性別有關(guān).
性別 | 入圍人數(shù) | 未入圍人數(shù) | 總計(jì) |
男生 | 24 | ||
女生 | 80 | ||
總計(jì) |
(2)用分層抽樣的方法從“入圍學(xué)生”中隨機(jī)抽取名學(xué)生.
(。┣筮@名學(xué)生中女生的人數(shù);
(ⅱ)若抽取的女生的腦力測(cè)試分?jǐn)?shù)各不相同(每個(gè)人的分?jǐn)?shù)都是整數(shù)),求這名學(xué)生中女生測(cè)試分?jǐn)?shù)的平均分的最小值.
附:,其中
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)見解析(2) (。5 (ⅱ)122
【解析】
(1)由題,女生共100人,可得入圍的學(xué)生人數(shù),即可完成聯(lián)表,求得,得出結(jié)果;
(2)(ⅰ)根據(jù)分層抽樣是按比例抽取,得出結(jié)果;
(ⅱ)由題,分別求得抽取的女人的分?jǐn)?shù),再求得平均值.
解:(1)填寫列聯(lián)表如下:
性別 | 入圍人數(shù) | 未入圍人數(shù) | 總計(jì) |
男生 | 24 | 76 | 100 |
女生 | 20 | 80 | 100 |
總計(jì) | 44 | 156 | 200 |
因?yàn)?/span>的觀察值,
所以沒(méi)有90%以上的把握認(rèn)為腦力測(cè)試后是否為“入圍學(xué)生”與性別有關(guān).
(2)(。┻@11名學(xué)生中,被抽到的女生人數(shù)為,
(ⅱ)因?yàn)槿雵姆謹(jǐn)?shù)不低于120分,且每個(gè)女生的測(cè)試分?jǐn)?shù)各不相同,每個(gè)人的分?jǐn)?shù)都是整數(shù),所以這11名學(xué)生中女生的平均分的最小值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),求證:函數(shù)有且僅有一個(gè)零點(diǎn);
(Ⅲ)當(dāng)時(shí),寫出函數(shù)的零點(diǎn)的個(gè)數(shù).(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出.具體操作是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過(guò)程逐次得到各個(gè)圖形,如圖.
現(xiàn)在上述圖(3)中隨機(jī)選取一個(gè)點(diǎn),則此點(diǎn)取自陰影部分的概率為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓是長(zhǎng)軸的一個(gè)端點(diǎn),弦過(guò)橢圓的中心O,點(diǎn)C在第一象限,且,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P、Q為橢圓上不重合的兩點(diǎn)且異于A、B,若的平分線總是垂直于x軸,問(wèn)是否存在實(shí)數(shù),使得?若不存在,請(qǐng)說(shuō)明理由;若存在,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,,,分別為、的中點(diǎn).
(1)證明:平面;
(2)已知與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)說(shuō)法,其中正確的是( )
A.命題“若,則”的否命題是“若,則”
B.“”是“雙曲線的離心率大于”的充要條件
C.命題“,”的否定是“,”
D.命題“在中,若,則是銳角三角形”的逆否命題是假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn),與短軸的一個(gè)端點(diǎn)構(gòu)成一個(gè)等邊三角形,且直線與圓相切.
(1)求橢圓的方程;
(2)已知過(guò)橢圓的左頂點(diǎn)的兩條直線,分別交橢圓于,兩點(diǎn),且,求證:直線過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo);
(3)在(2)的條件下求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十七世紀(jì),法國(guó)數(shù)學(xué)家費(fèi)馬提出猜想;“當(dāng)整數(shù)時(shí),關(guān)于、、的方程沒(méi)有正整數(shù)解”,經(jīng)歷三百多年,1995年英國(guó)數(shù)學(xué)家安德魯懷爾斯給出了證明,使它終成費(fèi)馬大定理,則下面命題正確的是( )
①對(duì)任意正整數(shù),關(guān)于、、的方程都沒(méi)有正整數(shù)解;
②當(dāng)整數(shù)時(shí),關(guān)于、、的方程至少存在一組正整數(shù)解;
③當(dāng)正整數(shù)時(shí),關(guān)于、、的方程至少存在一組正整數(shù)解;
④若關(guān)于、、的方程至少存在一組正整數(shù)解,則正整數(shù);
A.①②/span>B.①③C.②④D.③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com