分析 問題轉(zhuǎn)化為2a≤lg(x2+100)-siny,令z=lg(x2+100)-siny,根據(jù)對數(shù)函數(shù)和三角函數(shù)的性質(zhì)求出z的最小值,從而求出a的范圍即可.
解答 解:不等式lg(x2+100)≥2a+siny對一切非零實數(shù)x,y均成立,
∴2a≤lg(x2+100)-siny,
令z=lg(x2+100)-siny,則z≥lg100-1=1,
∴2a≤1,解得:a≤0,
則實數(shù)a的取值范圍為(-∞,0].
點評 本題考查了函數(shù)恒成立問題,考查對數(shù)函數(shù)和三角函數(shù)的性質(zhì),是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1000$\sqrt{2}$π | B. | 125$\sqrt{2}$π | C. | $\frac{1000\sqrt{2}π}{3}$ | D. | $\frac{125\sqrt{2}π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com