5.已知 Sn是數(shù)列{an}的前n項和,且Sn=2an+n-4.
(1)求a1的值;
(2)若bn=an-1,試證明數(shù)列{bn}為等比數(shù)列;
(3)求數(shù)列{an}的通項公式,并證明:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<1.

分析 (1)直接令n=1代入計算即可;
(2)通過Sn=2an+n-4與Sn-1=2an-1+n-5作差、變形可知an=2an-1,進而整理即得結論;
(3)通過(2)放縮可知$\frac{1}{{a}_{n}}$<$\frac{1}{{2}^{n}}$,進而利用等比數(shù)列的求和公式計算即得結論.

解答 (1)解:∵Sn=2an+n-4,
∴a1=S1=2a1+1-4,即a1=3;
(2)證明:∵Sn=2an+n-4,
∴當n≥2時,Sn-1=2an-1+n-5,
兩式相減得:an=2an-2an-1+1,即an=2an-1,
變形,得:an-1=2(an-1-1),
由(1)可知b1=a1-1=2,
故數(shù)列{bn}是首項、公比均為2的等比數(shù)列;
(3)證明:由(2)可知an=2n+1,
∵$\frac{1}{{a}_{n}}$=$\frac{1}{{1+2}^{n}}$<$\frac{1}{{2}^{n}}$,
∴$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$<1.

點評 本題是一道關于數(shù)列與不等式的綜合題,考查運算求解能力,注意解題方法的積累,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式.某機構對“使用微信交流”的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如表:
年齡(單位:歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)31012721
(Ⅰ)若以“年齡45歲為分界點”.由以上統(tǒng)計數(shù)據(jù)完成下面的2×2列聯(lián)表,并判斷是否有99%的把握認為
“使用微信交流”的態(tài)度與人的年齡有關:
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計
贊成
不贊成
合計
(Ⅱ)若從年齡在[55,65)的被調(diào)查人中隨機選取2人進行追蹤調(diào)查,求2人中至少有1人不贊成“使用微信交流”的概率
參考數(shù)據(jù)如下:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(n=a+b+c+d).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.某幾何體的三視圖如圖,該幾何體的表面積為( 。
A.$\frac{3π}{4}$B.πC.$\frac{5π}{4}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.不等式lg(x2+100)≥2a+siny對一切非零實數(shù)x,y均成立,則實數(shù)a的取值范圍為(-∞,0].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知圓錐的底面直徑為$\frac{2\sqrt{3π}}{3π}$,且它的側(cè)面展開圖是一個半圓,則圓錐的表面積為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.如果一條直線與兩條直線都相交,這三條直線共可確定1或2或3個平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.P是等腰直角三角形ABC所在平面外一點,斜邊AB=PC,A是P在平面ABC上的射影,求:PC與平面ABC所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.高一(4)班有5位同學參加夏令營植樹活動,其中男生2人,女生3人,從這5人中任意選出2人去澆水,選出的2人都是男生的概率是$\frac{1}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設函數(shù)f(x)=$\frac{1-x}{1+x}$,記f1(x)=f(f(x)),f2(x)=f(f1(x)),…,fn+1(x)=f(fn(x)),n∈N*,那么下列說法正確的是(  )
A.f(x)的圖象關于點(-1,1)對稱,f2016(0)=0
B.f(x)的圖象關于點(-1,-1)對稱,f2016(0)=0
C.f(x)的圖象關于點(-1,1)對稱,f2016(0)=1
D.f(x)的圖象關于點(-1,-1)對稱,f2016(0)=1

查看答案和解析>>

同步練習冊答案