分析 問題轉化為a≥$\frac{2+lnx}{x}$在(0,+∞)恒成立,令h(x)=$\frac{2+lnx}{x}$,根據函數的單調性,求出a的范圍即可.
解答 解:對于?x∈(0,+∞),關于x的不等式lnx-ax+2≤0恒成立,
即a≥$\frac{2+lnx}{x}$在(0,+∞)恒成立,
令h(x)=$\frac{2+lnx}{x}$,h′(x)=$\frac{-1-lnx}{{x}^{2}}$,
令h′(x)>0,解得:x<$\frac{1}{e}$,令h′(x)<0,解得:x>$\frac{1}{e}$,
∴h(x)在(0,$\frac{1}{e}$)遞增,在($\frac{1}{e}$,+∞)遞減,
h(x)≤h($\frac{1}{e}$)=e,
∴a≥e,
故答案為:[e,+∞).
點評 本題考查了函數的單調性、最值問題,考查導數的應用,是一道中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | b<c<a | B. | c<a<b | C. | c<b<a | D. | b<a<c |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
分組(單位:歲) | 頻數 | 頻率 |
[20,25) | 5 | 0.05 |
[25,30) | 20 | 0.20 |
[30,35) | ① | 0.350 |
[35,40) | 30 | ② |
[40,45] | 10 | 0.10 |
合計 | 100 | 1.000 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com