精英家教網 > 高中數學 > 題目詳情
5.若對于?x∈(0,+∞),關于x的不等式lnx-ax+2≤0恒成立,則實數a的取值范圍是[e,+∞).

分析 問題轉化為a≥$\frac{2+lnx}{x}$在(0,+∞)恒成立,令h(x)=$\frac{2+lnx}{x}$,根據函數的單調性,求出a的范圍即可.

解答 解:對于?x∈(0,+∞),關于x的不等式lnx-ax+2≤0恒成立,
即a≥$\frac{2+lnx}{x}$在(0,+∞)恒成立,
令h(x)=$\frac{2+lnx}{x}$,h′(x)=$\frac{-1-lnx}{{x}^{2}}$,
令h′(x)>0,解得:x<$\frac{1}{e}$,令h′(x)<0,解得:x>$\frac{1}{e}$,
∴h(x)在(0,$\frac{1}{e}$)遞增,在($\frac{1}{e}$,+∞)遞減,
h(x)≤h($\frac{1}{e}$)=e,
∴a≥e,
故答案為:[e,+∞).

點評 本題考查了函數的單調性、最值問題,考查導數的應用,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

15.若命題p:?x∈(0,+∞),a<x+$\frac{1}{x}$是假命題,則實數a的最小值為2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.在一次馬拉松比賽中,35名運動員的成績(單位:分鐘)的莖葉圖如圖所示.若將運動員按成績由好到差編為1~35號,再用系統(tǒng)抽樣方法從中抽取5人,則其中成績在區(qū)間[142,148]上的運動員人數是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.某工廠欲加工一件藝術品,需要用到三棱錐形狀的坯材,工人將如圖所示的長方體ABCD-EFQH材料切割成三棱錐H-ACF.
(Ⅰ)若點M,N,K分別是棱HA,HC,HF的中點,點G是NK上的任意一點,求證:MG∥平面ACF;
(Ⅱ)已知原長方體材料中,AB=2,AD=3,DH=1,根據藝術品加工需要,工程師必須求出該三棱錐的高;甲工程師先求出AH所在直線與平面ACF所成的角θ,再根據公式h=AH•sinθ求三棱錐H-ACF的高h.請你根據甲工程師的思路,求該三棱錐的高.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.三個數a=(${\frac{1}{e}}$)-1,b=2${\;}^{\frac{1}{2}}}$,c=log${\;}_{\frac{1}{2}}}$3的大小順序為(  )
A.b<c<aB.c<a<bC.c<b<aD.b<a<c

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.隨著科技的發(fā)展,手機已經成為人們不可或缺的交流工具,除傳統(tǒng)的打電話外,手機的功能越來越強大,人們可以玩游戲,看小說,觀電影,逛商城等,真是“一機在手,天下我有”,所以,有人把喜歡玩手機的人冠上了名號“低頭族”,低頭族已經嚴重影響了人們的生活,一媒體為調查市民對低頭族的認識,從某社區(qū)的500名市民中,隨機抽取100名市民,按年齡情況進行統(tǒng)計的頻率分布表和頻率分布直方圖.
分組(單位:歲)頻數頻率
[20,25)50.05
[25,30)200.20
[30,35)0.350
[35,40)30
[40,45]100.10
合計1001.000
(I)頻率分布表中的①②位置應填什么數?并補全頻率分布直方圖,再根據頻率分布直方圖統(tǒng)計這500名市民的平均年齡;
(II)在抽出的100名中按年齡采用分層抽樣的方法抽取20名接受采訪,再從抽出的這20名中年齡在[30,40)的選取2名擔任主要發(fā)言人.記這2名主要發(fā)言人年齡在[30,35)的人數為ξ,求ξ的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.如圖,在梯形ABCD中,AB∥CD,BC=6,cos∠ABC=-$\frac{1}{3}$.
(Ⅰ)若∠BAC=$\frac{π}{4}$,求AC的長;
(Ⅱ)若BD=9,求△BCD的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$是同一平面內的三個向量,其中$\overrightarrow a$=(-1,2).
(1)若|${\overrightarrow c}$|=$\sqrt{5}$,且$\overrightarrow a$∥$\overrightarrow c$,求$\overrightarrow c$的坐標;
(2)若|${\overrightarrow b}$|=$\frac{{\sqrt{5}}}{2}$,且($\overrightarrow a$+$\overrightarrow{2b}$)⊥(2$\overrightarrow a$-$\overrightarrow b$),求|2$\overrightarrow a$+$\overrightarrow b}$|.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.下列說法中正確的個數是( 。
①命題“若a=0,則ab=0”的否命題是:“若a=0,則ab≠0”;
②命題p:“?x∈(-∞,0),2x<3x”,則¬p:“?x∈[0,+∞),2x≥3x”;
③對于實數a,b,“b<a<0”是“$\frac{1}$>$\frac{1}{a}$”成立的充分不必要條件
④如果命題“¬p”與命題“p或q”都是真命題,那么命題q一定是真命題.
⑤設M為平面內任意一點,則A、B、C三點共線的充要條件是存在角α,使$\overrightarrow{MB}$=sin2α•$\overrightarrow{MA}$+cos2α$\overrightarrow{MC}$.
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案