11.下列說法中正確的個數(shù)是( 。
①命題“若a=0,則ab=0”的否命題是:“若a=0,則ab≠0”;
②命題p:“?x∈(-∞,0),2x<3x”,則¬p:“?x∈[0,+∞),2x≥3x”;
③對于實數(shù)a,b,“b<a<0”是“$\frac{1}$>$\frac{1}{a}$”成立的充分不必要條件
④如果命題“¬p”與命題“p或q”都是真命題,那么命題q一定是真命題.
⑤設M為平面內(nèi)任意一點,則A、B、C三點共線的充要條件是存在角α,使$\overrightarrow{MB}$=sin2α•$\overrightarrow{MA}$+cos2α$\overrightarrow{MC}$.
A.1B.2C.3D.4

分析 ①命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”,即可判斷出正誤;
②利用非命題的定義即可判斷出正誤;
③對于實數(shù)a,b,“b<a<0”⇒“$\frac{1}$>$\frac{1}{a}$”,反之不成立,即可判斷出正誤;
④由已知可得命題p是假命題,q一定是真命題,即可判斷出正誤;
⑤根據(jù)三點共線的充要條件,即可判斷出正誤.

解答 解:①命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”,故①不正確;
②命題p:“?x∈(-∞,0),2x<3x”,則¬p:“?x∈(-∞,0),2x≥3x”,故②不正確;
③對于實數(shù)a,b,“b<a<0”⇒“$\frac{1}$>$\frac{1}{a}$”,反之不成立,例如取a>b>0時,$\frac{1}$>$\frac{1}{a}$,因此,“b<a<0”是“$\frac{1}$>$\frac{1}{a}$”成立的充分不必要條件,故③正確;
④如果命題“¬p”是真命題,命題“p或q”是真命題,則p,q至少一個是真命題,那么命題q一定是真命題,故④正確;
⑤若A、B、C三點共線,則存在x,y∈R,使$\overrightarrow{MB}$=x$\overrightarrow{MA}$+y$\overrightarrow{MC}$(x+y=1),
若$\overrightarrow{MB}$=sin2α•$\overrightarrow{MA}$+cos2α$\overrightarrow{MC}$,而sin2α∈[0,1],故⑤不正確.
∴正確的個數(shù)是:2.
故選:B.

點評 本題考查了簡易邏輯的判定方法、不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.若對于?x∈(0,+∞),關于x的不等式lnx-ax+2≤0恒成立,則實數(shù)a的取值范圍是[e,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知數(shù)列{an}是等差數(shù)列,且a4=1,a7=16,則a6等于( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在極坐標系中,點(2,$\frac{π}{6}$)到直線ρsin(θ-$\frac{π}{6}$)=2的距離等于2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知定義域為R的函數(shù)f(x)滿足:對任意的x∈R,有f(x+2)=2f(x),且當x∈[-1,1]時,$f(x)=\sqrt{1-{x^2}}$,若函數(shù)$g(x)=\left\{{\begin{array}{l}{lnx\;(x>0)}\\{{e^x}\;(x≤0)}\end{array}}\right.$,則函數(shù)y=f(x)-g(x)在區(qū)間[-3,3]上的零點個數(shù)是(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.曲線y=lnx+x在點(1,f(1))處的切線方程為( 。
A.y=2x-1B.y=-x+1C.y=x-1D.y=-2x+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知|tanx|=2,x∈($\frac{π}{2}$,π).
(1)求tan2x的值;
(2)求sin(x+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知實數(shù)x、y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,則目標函數(shù)z=$\frac{y+2}{x}$的取值范圍是( 。
A.[-$\frac{1}{3}$,+∞)B.[-1,$\frac{1}{2}$]C.(-∞,-1]∪[$\frac{1}{2}$,+∞)D.[-$\frac{1}{3}$,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.2015年元旦前夕,某市統(tǒng)計局統(tǒng)計了該市2014年10戶家庭的年收入和年飲食支出的統(tǒng)計資料如表:
年收入x/萬元24466677810
年支出y/萬元0.91.41.62.02.11.91.82.12.22.3
(1)如果已知y與x是線性相關的,求回歸方程;
(2)若某家庭年收入為9萬元,預測其年飲食支出.
(參考數(shù)據(jù):$\sum_{i=1}^{10}{x_i}{y_i}=117.7$,$\sum_{i=1}^{10}{{x_i}^2}=406$)
附:回歸直線的斜率和截距的最小二乘法公式分別為$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-b$\overline{x}$.

查看答案和解析>>

同步練習冊答案