9.一個(gè)幾何體的三視圖(單位:m)如圖所示,則此幾何體的表面積為12π+12m2

分析 由三視圖知該幾何體是半個(gè)圓錐,由三視圖求出幾何元素的長度,由圓錐的側(cè)面積公式、圓的面積公式和三角形的面積公式求出此幾何體的表面積.

解答 解:根據(jù)三視圖可知幾何體是半個(gè)圓錐,
且底面圓的半徑r=3m、圓錐的高是4m,則母線l=$\sqrt{{r}^{2}+{h}^{2}}$=5(m),
∴此幾何體的表面積S=$\frac{1}{2}π{r}^{2}+\frac{1}{2}πrl+\frac{1}{2}×2r×h$
=$\frac{1}{2}π×9+\frac{1}{2}π×3×5+3×4$=12π+12(m2),
故答案為:12π+12.

點(diǎn)評 本題考查三視圖求幾何體的表面積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,在三棱錐V-ABC中,VA⊥VC,AB⊥BC,∠VAC=∠ACB=45°,若側(cè)面VAC⊥底面ABC,則其主視圖與左視圖面積之比為( 。
A.2:1B.2:$\sqrt{3}$C.$\sqrt{2}$:1D.1:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.2015年7月9日21時(shí)15分,臺風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成直接經(jīng)濟(jì)損失12.99億元.適逢暑假,小明調(diào)查了某小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如圖頻率分布直方圖.
(Ⅰ)小明向班級同學(xué)發(fā)出倡議,為該小區(qū)居民捐款.現(xiàn)從損失超過6000元的居民中隨機(jī)抽出2戶進(jìn)行捐款援助,求這兩戶在同一分組的概率;
(Ⅱ)臺風(fēng)后區(qū)委會(huì)號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如表,在表格空白處填寫正確數(shù)字,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
經(jīng)濟(jì)損失不超過
4000元
經(jīng)濟(jì)損失超過
4000元
合計(jì)
捐款超過
500元
30
捐款不超
過500元
6
合計(jì)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若某幾何體的三視圖如圖所示,則此幾何體的體積等于( 。
A.30B.24C.12D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}滿足a1=4,an=$\frac{{4{a_{n-1}}-4}}{{{a_{n-1}}}}$,記bn=$\frac{1}{{{a_n}-2}}$.
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{bn}前n項(xiàng)和Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.正四棱錐的主視圖和俯視圖如圖所示,其中主視圖為邊長為1的正三角形,則該正四棱錐的表面積為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)f(x)=x2+bx+c(b、c∈R).
(1)設(shè)m∈R,函數(shù)g(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x+m,x≥0}\\{f(x),x<0}\end{array}\right.$為奇函數(shù),求b+c的值;
(2)若f(x)=x沒有實(shí)數(shù)根,問:f(f(x))=x是否有實(shí)數(shù)根?并證明你的結(jié)論;
(3)若對一切θ∈R,有f($\frac{2}{sinθ}$)≥0,且f(2+$\frac{1}{1+ta{n}^{2}θ}$的最大值為1,求b、c滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-(a+1)x-4(a+5),g(x)=x2-ax+5,其中a∈R.
(Ⅰ)若f(x)在區(qū)間[0,1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)、g(x)存在相同的零點(diǎn),求實(shí)數(shù)a的值;
(Ⅲ)若存在x0∈[1,3],使得不等式|g(x0)|≤2x0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q=2,S10=1023,則S2+S4+S6+S8+S10的值為1359.

查看答案和解析>>

同步練習(xí)冊答案