分析 由兩向量的坐標(biāo),利用平面向量的數(shù)量積運(yùn)算法則計(jì)算$\overrightarrow{m}•\overrightarrow{n}$,表示出函數(shù)的解析式,第一項(xiàng)利用二倍角的余弦函數(shù)公式化簡(jiǎn)后,后兩項(xiàng)提取2,利用特殊角的三角函數(shù)值及兩角和與差的余弦函數(shù)公式化為一個(gè)角的余弦函數(shù),
(1)找出ω的值,代入周期公式T=$\frac{2π}{|ω|}$中,即可求出函數(shù)的最小正周期,再由余弦函數(shù)的單調(diào)遞減區(qū)間為[2kπ,2kπ+π]列出關(guān)于x的不等式,求出不等式的解集可得出函數(shù)的遞減區(qū)間;
(2)①由f(A)=2,將x=A代入得到cos(2A-$\frac{π}{3}$)的值,由A為三角形的內(nèi)角,得到A的范圍,進(jìn)而確定出2A-$\frac{π}{3}$的范圍,利用特殊角的三角函數(shù)值即可求出A的度數(shù).
②由三角形的面積公式可求c,利用余弦定理可求a,利用正弦定理,比例的性質(zhì)即可得解.
解答 解:∵$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),
∴f(x)=$\overrightarrow{m}•\overrightarrow{n}$=2cos2x+$\sqrt{3}$sin2x=1+cos2x+$\sqrt{3}$sin2x
=1+2($\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x)=1+2cos(2x-$\frac{π}{3}$),
(1)∵ω=2,∴T=$\frac{2π}{2}$=π,
令2kπ≤2x-$\frac{π}{3}$≤2kπ+π,k∈Z,解得:kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,k∈Z,
則函數(shù)f(x)的單調(diào)遞減區(qū)間為[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z;
(2)①∵f(A)=2,
∴1+2cos(2A-$\frac{π}{3}$)=2,
∴cos(2A-$\frac{π}{3}$)=$\frac{1}{2}$,
∵A∈(0,π),
∴2A-$\frac{π}{3}$∈(-$\frac{π}{3}$,$\frac{5π}{3}$),
∴2A-$\frac{π}{3}$=$\frac{π}{3}$,
則A=$\frac{π}{3}$.
②∵b=1,△ABC的面積為$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}×1×c×\frac{\sqrt{3}}{2}$,
∴c=2,
∴a=$\sqrt{^{2}+{c}^{2}-2bccosA}$=$\sqrt{1+4-2×1×2×\frac{1}{2}}$=$\sqrt{3}$,
∴$\frac{b+c}{sinB+sinC}$=$\frac{a}{sinA}$=$\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}$=2.
點(diǎn)評(píng) 此題屬于解三角形的題型,涉及的知識(shí)有:平面向量的數(shù)量積運(yùn)算法則,二倍角的余弦函數(shù)公式,兩角和與差的正弦函數(shù)公式,余弦函數(shù)的單調(diào)性,以及特殊角的三角函數(shù)值,熟練掌握公式及法則是解本題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com