如圖,在四棱錐中,底面是直角梯形,,,
平面平面,若,,,,且.
(1)求證:平面;
(2)設(shè)平面與平面所成二面角的大小為,求的值.
(1)參考解析;(2)
解析試題分析:(1)由,所以.又,.在三角形PAO中由余弦定理可得.所以.即.又平面平面且平面平面=AD,平面PAD.所以平面.
(2)由題意可得建立空間坐標(biāo)系,寫(xiě)出相應(yīng)點(diǎn)的坐標(biāo),平面PAD的法向量易得,用待定系數(shù)寫(xiě)出平面PBC的法向量,根據(jù)兩向量的法向量夾角的余弦值,求出二面角的余弦值.
(1)因?yàn)?,,所以, 1分
在中,由余弦定理,
得, 3分
,, 4分
, 5分
又平面平面,平面平面,平面,
平面. 6分
(2)如圖,過(guò)作交于,則,,兩兩垂直,以為坐標(biāo)原點(diǎn),分別以,,所在直線(xiàn)為軸,建立空間直角坐標(biāo)系, 7分
則,,
8分
,
, 9分
設(shè)平面的一個(gè)法向量為,
由得即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知空間四邊形ABCD的每條邊和對(duì)角線(xiàn)長(zhǎng)都等于1,點(diǎn)E、F、G分別是AB、AD、CD的中點(diǎn),計(jì)算:
(1)·;
(2)·;
(3)EG的長(zhǎng);
(4)異面直線(xiàn)AG與CE所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐中,,,,平面⊥平面,是線(xiàn)段上一點(diǎn),,.
(1)證明:⊥平面;
(2)若,求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱柱中,底面,,,分別是棱,的中點(diǎn),為棱上的一點(diǎn),且//平面.
(1)求的值;
(2)求證:;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐中,直線(xiàn)平面,且
,又點(diǎn),,分別是線(xiàn)段,,的中點(diǎn),且點(diǎn)是線(xiàn)段上的動(dòng)點(diǎn).
證明:直線(xiàn)平面;
(2) 若,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱錐中,,,,點(diǎn)在平面內(nèi)的射影恰為的重心,M為側(cè)棱上一動(dòng)點(diǎn).
(1)求證:平面平面;
(2)當(dāng)M為的中點(diǎn)時(shí),求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com