【題目】已知數(shù)列和滿足,,,.
(1)證明:是等比數(shù)列,是等差數(shù)列;
(2)求和的通項(xiàng)公式;
(3)令,求數(shù)列的前項(xiàng)和的通項(xiàng)公式,并求數(shù)列的最大值、最小值,并指出分別是第幾項(xiàng).
【答案】(1)證明見解析;(2),;(3)當(dāng)為偶數(shù)時(shí),,當(dāng)為奇數(shù)時(shí),;的最大值為第1項(xiàng),最大值為1,最小值為第2項(xiàng),最小值為.
【解析】
(1)根據(jù)定義判斷是等比數(shù)列,是等差數(shù)列;
(2)由(1)求得和的通項(xiàng)公式,解方程分別求得和的通項(xiàng)公式
(3)先求為偶數(shù)時(shí)的,利用并項(xiàng)求和法求出,再求為奇數(shù)時(shí)的,
利用遞推式(為偶數(shù)),再分析的符號(hào)和單調(diào)性,求出的最大
值和最小值.
解: (1)由題,,相加得
得,故是首項(xiàng)為公比為的等比數(shù)列;
又由,,相減得,
即,故是首項(xiàng)為公差為 的等比數(shù)列.
(2)由(1)得,,聯(lián)立解得
,
(3)由(2)得
當(dāng)為偶數(shù)時(shí),
當(dāng)為奇數(shù)時(shí),,
時(shí),
則當(dāng)為奇數(shù)時(shí),.
綜合得
則當(dāng)為奇數(shù)時(shí),單調(diào)遞增且;
當(dāng)為偶數(shù)時(shí),
故單調(diào)遞減,又,即,
則當(dāng)為奇數(shù)時(shí),單調(diào)遞減且,當(dāng)為偶數(shù)時(shí),單調(diào)遞增且
故的最大值為第1項(xiàng),最大值為1,最小值為第2項(xiàng),最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)是曲線上一點(diǎn),若點(diǎn)到曲線的最小距離為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面四邊形ABCD中,CD=1,BC=2,∠C=120°
(1)求cos∠CBD的值;
(2)若AD=4,cos∠ABC,求∠A的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人參加普法知識(shí)競(jìng)賽,共有5題,選擇題3個(gè),判斷題2個(gè),甲、乙兩人各抽一題.
(1)甲、乙兩人中有一個(gè)抽到選擇題,另一個(gè)抽到判斷題的概率是多少?
(2)甲、乙兩人中至少有一人抽到選擇題的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用0與1兩個(gè)數(shù)字隨機(jī)填入如圖所示的5個(gè)格子里,每個(gè)格子填一個(gè)數(shù)字,并且從左到右數(shù),不管數(shù)到哪個(gè)格子,總是1的個(gè)數(shù)不少于0的個(gè)數(shù),則這樣填法的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求下列函數(shù)的單調(diào)區(qū)間.
(1)f(x)=3|x|;
(2)f(x)=|x2+2x-3|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在上是增函數(shù),則的取值范圍是( 。
A. B. C. D.
【答案】C
【解析】
若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)>0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍.
若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),
則當(dāng)x∈[2,+∞)時(shí),
x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)
即,f(2)=4+a>0
解得﹣4<a≤4
故選:C.
【點(diǎn)睛】
本題考查的知識(shí)點(diǎn)是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對(duì)數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復(fù)合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.
【題型】單選題
【結(jié)束】
10
【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究函數(shù)的圖象與性質(zhì).
(1)下表是y與x的幾組對(duì)應(yīng)值.
… | … | ||||||||
… | … |
其中m的值為_______________;
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并已畫出了函數(shù)圖象的一部分,請(qǐng)你畫出該圖象的另一部分;
(3)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì):_________;
(4)若關(guān)于x的方程有2個(gè)實(shí)數(shù)根,則t的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在以為直徑的圓上,垂直與圓所在平面,為的垂心.
(1)求證:平面平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com