分析 由條件:“經(jīng)過(guò)A、B、C這三點(diǎn)的小圓周長(zhǎng)為4$\sqrt{3}$π,”得出正三角形ABC的外接圓半徑r=2$\sqrt{3}$,再結(jié)合球的性質(zhì)知:三角形ABC的外接圓半徑r、球的半徑、球心與三角形ABC的外接圓的圓心的連線(xiàn)構(gòu)成直角三角形,再利用直角三角形的勾股定理,解出球半徑R,即可求出球O的體積.
解答 解:因?yàn)檎切蜛BC的外徑r=2$\sqrt{3}$,故高AD=3$\sqrt{3}$,D是BC的中點(diǎn).
在△OBC中,BO=CO=R,∠BOC=$\frac{π}{3}$,所以BC=BO=R,BD=$\frac{1}{2}$BC=$\frac{1}{2}$R.
在Rt△ABD中,AB=BC=R,所以由AB2=BD2+AD2,得R2=$\frac{1}{4}$R2+27,所以R=6
則球O的體積為:V=$\frac{4}{3}π•{6}^{3}$=288π.
故答案為:288π.
點(diǎn)評(píng) 本題考查學(xué)生的空間想象能力,以及對(duì)球的性質(zhì)認(rèn)識(shí)及利用,是中檔題.此類(lèi)題的解法是:充分利用圖形的特點(diǎn)構(gòu)造三角形,根據(jù)球的性質(zhì)結(jié)合解三角形解決問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,1] | B. | (-1,1) | C. | ∅ | D. | [-1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直線(xiàn)x=$\frac{π}{6}$ | B. | 直線(xiàn)x=$\frac{π}{12}$ | C. | 直線(xiàn)x=-$\frac{π}{6}$ | D. | 直線(xiàn)x=-$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com