20.已知i是虛數(shù)單位,則滿足z-i=|3+4i|的復(fù)數(shù)z在復(fù)平面上對應(yīng)點所在的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 把已知等式變形求得z,得到z在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)得答案.

解答 解:由z-i=|3+4i|,得$z=\sqrt{{3}^{2}+{4}^{2}}+i=5+i$,
∴復(fù)數(shù)z在復(fù)平面上對應(yīng)點的坐標(biāo)為(5,1),所在的象限為第一象限.
故選:A.

點評 本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={y|y=x2,x∈R},N={y|y=-2x2+3,x∈R},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若球O的球面上共有三點A、B、C,其中任意兩點間的球面距離都等于大圓周長的$\frac{1}{6}$,經(jīng)過A、B、C這三點的小圓周長為4$\sqrt{3}$π,則球O的體積為288π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若$\frac{sinC}{sinA}$=2,b=$\sqrt{3}$a,則B=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若集合A={x|kx2+4x+4=0,k∈R}只有一個元素,則k的值為( 。
A.1B.0C.0或1D.以上答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的前n項和為Sn,a1=$\frac{3}{2}$,2Sn=(n+1)an+1(n≥2).
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{1}{({a}_{n}+1)^{2}}$(n∈N*),數(shù)列{bn}的前n項和為Tn,證明:Tn<$\frac{7}{10}$(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知鈍角三角形ABC的面積是$\frac{1}{2}$,c=1,a=$\sqrt{2}$,則b=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.體積為27的正方體的頂點都在同一個球面上,則該球的半徑為$\frac{{3\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.命題“?n∈N*,?x∈R,使得n2<x”的否定形式是( 。
A.?n∈N*,?x∈R,使得n2≥xB.?n∈N*,?x∈R,使n2≥x
C.?n∈N*,?x∈R,使得n2≥xD.?n∈N*,?x∈R,使得n2≥x

查看答案和解析>>

同步練習(xí)冊答案