1.在等比數(shù)列{an}中,an>0,且a1•a10=27,log3a2+log3a9等于(  )
A.9B.6C.3D.2

分析 由等比數(shù)列的性質(zhì)可a2•a9=a1•a10=27,整體代入log3a2+log3a9=log3a2•a9,計(jì)算可得.

解答 解:∵在等比數(shù)列{an}中,an>0,且a1•a10=27,
∴由等比數(shù)列的性質(zhì)可得a2•a9=a1•a10=27,
∴l(xiāng)og3a2+log3a9=log3a2•a9=log327=3,
故選:C.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,涉及等比數(shù)列的性質(zhì)和對(duì)數(shù)的運(yùn)算,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.方程sin2x=cosx,x∈(0,π)的實(shí)根的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)a>0,b>0,求證:lg(1+$\sqrt{ab}$)≤$\frac{1}{2}$[lg(1+a)+lg(1+b)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.$\overrightarrow{a}$=(3,-2),$\overrightarrow$=(4,-1),$\overrightarrow{c}$=(5,2),計(jì)算|$\overrightarrow{a}$-$\overrightarrow$|,|$\overrightarrow$+$\overrightarrow{c}$|和$\overrightarrow{a}$•$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知在Rt△ABC中,C=90°,則sinAsinB的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,{$\sqrt{{a}_{n}}$}是等比數(shù)列嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=-2xlnx+x2-2ax+a2,其中a>0.
(Ⅰ)設(shè)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性.
(Ⅱ)證明:存在a∈(0,1),使得f(x)≥0在x∈(0,+∞)上恒成立,且f(x)=0在區(qū)間(1,+∞)內(nèi)有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.極坐標(biāo)與直角坐標(biāo)系xOy有相同的長度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.曲線C1的極坐標(biāo)方程為ρ-2cosθ=0,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=t+m}\\{y=2t-1}\end{array}\right.$(t是參數(shù),m是常數(shù))
(Ⅰ)求C1的直角坐標(biāo)方程和C2的普通方程;
(Ⅱ)若C2與C1有兩個(gè)不同的公共點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知偶函數(shù)f(x)的定義域?yàn)椋?1,0)∪(0,1),且f($\frac{1}{2}$)=0,當(dāng)0<x<1時(shí),不等式($\frac{1}{x}$-x)f′(x)•ln(1-x2)>2f(x)恒成立,那么不等式f(x)<0的解集為( 。
A.{x|-$\frac{1}{2}$<x<0或$\frac{1}{2}$<x<1}B.{x|-1<x<-$\frac{1}{2}$或$\frac{1}{2}$<x<1}
C.{x|-$\frac{1}{2}$<x<$\frac{1}{2}$且x≠0}D.{x|-1<x<-$\frac{1}{2}$或0<x<$\frac{1}{2}$}

查看答案和解析>>

同步練習(xí)冊(cè)答案