7.求函數(shù)$y=x+\frac{4}{x}$的單調(diào)區(qū)間與極值.

分析 求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.

解答 解:函數(shù)的定義域是(-∞,0)∪(0,+∞),
∵y′=1-$\frac{4}{{x}^{2}}$=$\frac{{x}^{2}-4}{{x}^{2}}$,
令y′>0,解得:x>2或x<-2,令y′<0,解得:-2<x<0或0<x<2,
故增區(qū)間:(-∞,-2),(2,+∞),減區(qū)間:(-2,0),(0,2),
當(dāng)時,y極大值=-4;當(dāng)x=2時,y極小值=4.

點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=-$\frac{a}{π}$sinπx且f′(1)=2,則a的值為( 。
A.1B.2C.$\sqrt{2}$D.任意正數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)數(shù)列{an}為公比大于1的等比數(shù)列,若a2014和a2015是方程x2-4x+3=0的兩根,則a2016+a2017=( 。
A.32B.48C.36D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)Sn是公差不為0 的等差數(shù)列{an}的前n 項和,S1,S2,S4成等比數(shù)列,且${a_3}=-\frac{5}{2}$,則數(shù)列$\left\{{\frac{1}{{(2n+1){a_n}}}}\right\}$的前n 項和Tn=(  )
A.-$\frac{n}{2n+1}$B.$\frac{n}{2n+1}$C.-$\frac{2n}{2n+1}$D.$\frac{2n}{2n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{3}{1+{e}^{x}}$-a(a∈R,e為自然常數(shù)).
(1)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(2)是否存在實數(shù)a使函數(shù)f(x)是奇函數(shù),若存在,求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=lnx-f′(-1)x2+3x-4,則f′($\frac{1}{2}$)=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\frac{{e}^{x}}{a(x-1)}$(a≠0),且f(0)=1,若函數(shù)f(x)在(m,m+$\frac{1}{2}$)上單調(diào)遞增,則m的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知“p∧q”是假命題,則下列選項中一定為真命題的是( 。
A.p∨qB.(¬p)∧(¬q)C.(¬p)∨qD.(¬p)∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)f(x)=sin(2x-$\frac{π}{2}$),x∈R,則f(x)是( 。
A.周期為π的奇函數(shù)B.周期為π的偶函數(shù)
C.周期為$\frac{π}{2}$的奇函數(shù)D.周期為$\frac{π}{2}$的偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案