18.設(shè)數(shù)列{an}為公比大于1的等比數(shù)列,若a2014和a2015是方程x2-4x+3=0的兩根,則a2016+a2017=( 。
A.32B.48C.36D.54

分析 根據(jù){an}為公比q>1的等比數(shù)列,由a2014和a2015是方程x2-4x+3=0的兩根,可得a2014=1,a2015=3,從而可確定公比q,進(jìn)而可得a2016+a2017的值.

解答 解:∵{an}為公比q>1的等比數(shù)列,a2014和a2015是方程x2-4x+3=0的兩根,
∴a2014=1,a2015=3,
∴q=3,
∴a2016+a2017=9×(1+3)=36.
故選:C.

點(diǎn)評(píng) 本題考查根與系數(shù)的關(guān)系,考查等比數(shù)列,確定方程的根是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)a>0,b>0,且a≠b,試比較aabb,abba,(ab)${\;}^{\frac{a+b}{2}}$的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知$\overrightarrow{a}$=1,|$\overrightarrow{a}$-2$\overrightarrow$|=$\sqrt{13}$,$\overrightarrow{a}$與$\overrightarrow$的夾角是60°.
(1)求|$\overrightarrow$|,|$\overrightarrow{a}$+2$\overrightarrow$|;
(2)若($\overrightarrow{a}$+2$\overrightarrow$)⊥(λ$\overrightarrow{a}$-$\overrightarrow$),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.有兩個(gè)函數(shù)$f(x)=asin(kx+\frac{π}{3}),g(x)=btan(kx-\frac{π}{4})(k>0)$,它們的最小正周期之和為3π,且滿足$f(2π)=g(\frac{π}{2}),f(\frac{3π}{2})=g(\frac{5π}{12})-2$,求這兩個(gè)函數(shù)的解析式,并求g(x)的對(duì)稱中心坐標(biāo)及單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在今后的三天中,每一天下雨的概率均為40%現(xiàn)采用隨機(jī)模擬的方法:先由計(jì)算器給出0到9之間取整數(shù)值的隨機(jī)數(shù),指定1、2、3、4表示下雨,5、6、7、8、9、0表示不下雨,以3個(gè)隨機(jī)數(shù)為一組,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
根據(jù)以上數(shù)據(jù)估計(jì)三天中至少有兩天下雨的概率為( 。
A.0.25B.0.35C.0.6D.0.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若復(fù)數(shù)z滿足(z-1)i=1+i,則復(fù)數(shù)z的虛部為( 。
A.-iB.1C.-1D.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=emx+x2-mx(m∈R).
(Ⅰ)當(dāng)m=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若m<0,且曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+(e+1)y=0垂直.
(i)當(dāng)x>0時(shí),試比較f(x)與f(-x)的大。
(ii)若對(duì)任意x1,x2(x1≠x2),且f(x1)=f(x2),證明:x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求函數(shù)$y=x+\frac{4}{x}$的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知直三棱柱ABC-A1B1C1(側(cè)棱垂直于底面)的各頂點(diǎn)都在球O的球面上,且$AB=AC=BC=\sqrt{3}$若三棱柱ABC-A1B1C1的體積等于$\frac{9}{2}$,則球O的體積為$\frac{32π}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案