A. | $(-∞,-\frac{{\sqrt{2}}}{2}]$ | B. | $[\frac{{\sqrt{2}}}{2},+∞)$ | C. | $[-\frac{1}{2},\frac{1}{2}]$ | D. | $[-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}]$ |
分析 設過點M(-2,0)的直線l的方程為y=k(x+2),與橢圓方程聯立,得(2k2+1)x2+8k2x+8k2-2=0,由此利用根的判別式能求出直線l的斜率k的取值范圍.
解答 解:設過點M(-2,0)的直線l的方程為y=k(x+2),
聯立$\left\{\begin{array}{l}{y=k(x+2)}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得(2k2+1)x2+8k2x+8k2-2=0,
∵過點M(-2,0)的直線l與橢圓$\frac{x^2}{2}+{y^2}=1$有公共點,
∴△=64k4-4(2k2+1)(8k2-2)≥0,
整理,得k2$≤\frac{1}{2}$,
解得-$\frac{\sqrt{2}}{2}$≤k≤$\frac{\sqrt{2}}{2}$.
∴直線l的斜率k的取值范圍是[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$].
故選:D.
點評 本題考查直線的斜率的取值范圍的求法,是基礎題,解題時要認真審題,注意根的判別式的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {2,3,4} | B. | {2,3,4,5} | C. | {1,2,3,4,5} | D. | {-2,1,2,3,4,5} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a=b<c | B. | a=b>c | C. | b=c<a | D. | b=c>a |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com