3.已知集合A={1,2,3,4,5},集合B={-2,2,3,4,5,9},則集合A∩B=( 。
A.{2,3,4}B.{2,3,4,5}C.{1,2,3,4,5}D.{-2,1,2,3,4,5}

分析 由A與B,求出兩集合的交集即可.

解答 解:∵A={1,2,3,4,5},B={-2,2,3,4,5,9},
∴A∩B={2,3,4,5},
故選:B.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)變量x,y滿足的約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}\right.$,則z=32x-y的最大值9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.滿足{1,2}⊆M⊆{1,2,3,4}的集合M的個數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費用y(萬元),有如下的統(tǒng)計資料:
x12345
y567810
由資料可知y對x呈線性相關(guān)關(guān)系,且線性回歸方程為$\hat y=1.2x+a$,請估計使用年限為20年時,維修費用約為( 。
A.26.2B.27C.27.6D.28.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線平行于直線l:4x-3y+20=0,且雙曲線的一個焦點在直線l上,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{5{x}^{2}}{9}$-$\frac{5{y}^{2}}{16}$=1D.$\frac{5{x}^{2}}{16}$-$\frac{5{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某種病毒每經(jīng)30分鐘由1個病毒可分裂成2個病毒,經(jīng)過x小時后,病毒個數(shù)y與時間x(小時)的函數(shù)關(guān)系式為y=4x,經(jīng)過5小時,1個病毒能分裂成1024個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如果過點M(-2,0)的直線l與橢圓$\frac{x^2}{2}+{y^2}=1$有公共點,那么直線l的斜率k的取值范圍是( 。
A.$(-∞,-\frac{{\sqrt{2}}}{2}]$B.$[\frac{{\sqrt{2}}}{2},+∞)$C.$[-\frac{1}{2},\frac{1}{2}]$D.$[-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.雙曲線x2-2y2=16的實軸長等于8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.過點(0,-2)的直線l與圓x2+y2=1有公共點,則直線l的傾斜角的取值范圍是( 。
A.$[{\frac{π}{3},\frac{2π}{3}}]$B.$[{\frac{π}{6},\frac{5π}{6}}]$C.$({0,\frac{π}{3}}]∪[{\frac{2π}{3},π})$D.$[{\frac{π}{3},\frac{π}{2}})∪({\frac{π}{2},\frac{2π}{3}}]$

查看答案和解析>>

同步練習(xí)冊答案