【題目】對(duì)于兩個(gè)定義域均為D的函數(shù)fx),gx),若存在最小正實(shí)數(shù)M,使得對(duì)于任意x∈D,都有|fx)-gx|≤M,則稱M為函數(shù)fx),gx)的差距,并記作||fx),gx||

1)求fx)=sinxx∈R),gx)=cosxx∈R)的差距;

2)設(shè)fx)=x∈[1,]),gx)=mlnx x∈[1,]).(e≈2.718

m2,且||fx),gx||1,求滿足條件的最大正整數(shù)a;

a2,且||fx),gx||2,求實(shí)數(shù)m的取值范圍.

【答案】12 ①3②{2,2}

【解析】

試題(1)由定義知求|sinxcosx|最大值,根據(jù)三角函數(shù)配角公式得|sinxcosx||sinx|≤,所以差距為2根據(jù)定義先研究函數(shù)hx)=fx)-gx)=2lnx單調(diào)性:(0,16)上單調(diào)減,(16,)上單調(diào)增,因?yàn)?/span>h1)=1,所以h1,因此由定義得mlnx|≤2恒成立,利用變量分離法得對(duì)x∈1e]恒成立,分別利用導(dǎo)數(shù)求函數(shù)wx)=最小值及函數(shù)vx)=最大值即可

試題解析:(1|fx)-gx||sinxcosx||sinx|≤,當(dāng)x,k∈Z時(shí)取,所以||fx),gx||

2hx)=fx)-gx)=2lnx.則h′x)=,令h′x)=0,則x16.列表:

x

0,16

16

16,

h′x


0


hx




∵h(yuǎn)1)=1;當(dāng)a3時(shí),h)=3,由于16,因此2,所以3>-1;

當(dāng)a4時(shí),h)=e4<-1,故滿足條件的最大正整數(shù)為3

法一:由a2,且||fx),gx||2,得|fx)-gx|≤2,從而|mlnx|≤2,所以-2≤mlnx≤2

當(dāng)x1時(shí),上式顯然成立;

當(dāng)x∈1,e]時(shí),上式化為

wx)=,則w′x)=0,

從而wx)在(1,e]上遞減,從而wxminwe)=2,從而m≤2

vx)=,則v′x)=0

從而vx)在(1,e]上遞增,從而vxmaxve)=2,從而m≥2,

所以2≤m≤2

又由于||fx),gx||2,故m2m2,所以m的取值范圍為{2,2}

法二:令hx)=fx)-gx)=mlnx,則h′x)=

1)若m≤,則h′x≥0,從而hx)在[1,e]上遞增,又h1)=1,he)=m,所以m2,m2;

ii)若m≥,則h′x≤0,從而hx)在[1,e]上遞減,又h1)=1,he)=m,所以m=-2,m2;

iii)若m,則由h′x)=0,可得x4m2,列表

x

1

1, 4m2

4m2

4m2,e

e

h′x



0



hx

1


2mmln4m2


m

因?yàn)?/span>m-<2,所以2mmln4m2)=-2,.

um)=2mmln4m2)=m2ln4)-2mlnm

∴u′m)=2ln422lnm=-ln42lnm=-2 ln2m0,

∴um)>u)=,故該情況不成立.

綜上,m的取值范圍是{2,2}

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求曲線的普通方程以及直線的直角坐標(biāo)方程;

2)將曲線向左平移2個(gè)單位,再將曲線上的所有點(diǎn)的橫坐標(biāo)縮短為原來的,得到曲線,求曲線上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:從數(shù)列{an}中抽取mmN,m≥3)項(xiàng)按其在{an}中的次序排列形成一個(gè)新數(shù)列{bn},則稱{bn}{an}的子數(shù)列;若{bn}成等差(或等比),則稱{bn}{an}的等差(或等比)子數(shù)列.

1)記數(shù)列{an}的前n項(xiàng)和為Sn,已知

①求數(shù)列{an}的通項(xiàng)公式;

②數(shù)列{an}是否存在等差子數(shù)列,若存在,求出等差子數(shù)列;若不存在,請(qǐng)說明理由.

2)已知數(shù)列{an}的通項(xiàng)公式為ann+aaQ+),證明:{an}存在等比子數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,左、右頂點(diǎn)分別為、,線段的長(zhǎng)為4.點(diǎn)在橢圓上且位于第一象限,過點(diǎn)分別作,,直線,交于點(diǎn).

(1)若點(diǎn)的橫坐標(biāo)為-1,求點(diǎn)的坐標(biāo);

(2)直線與橢圓的另一交點(diǎn)為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊(duì)員進(jìn)行定點(diǎn)投籃訓(xùn)練,每次投中的概率是,且每次投籃的結(jié)果互不影響.

1)假設(shè)這名隊(duì)員投籃5次,求恰有2次投中的概率;

2)假設(shè)這名隊(duì)員投籃3次,每次投籃,投中得1分,為投中得0分,在3次投籃中,若有2次連續(xù)投中,而另外一次未投中,則額外加1分;若3次全投中,則額外加3分,記為隊(duì)員投籃3次后的總的分?jǐn)?shù),求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時(shí),,給出下列命題:

①當(dāng)時(shí),;

②函數(shù)2個(gè)零點(diǎn);

的解集為;

,都有.

其中真命題的個(gè)數(shù)為(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的內(nèi)角AB,C所對(duì)邊分別為ab、c,且2acosC=2b-c

1)求角A的大;

2)若AB=3,AC邊上的中線SD的長(zhǎng)為,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】人們隨著生活水平的提高,健康意識(shí)逐步加強(qiáng),健身開始走進(jìn)人們生活,在健身方面投入越來越多,為了調(diào)查參與健身的年輕人一年健身的花費(fèi)情況,研究人員在地區(qū)隨機(jī)抽取了參加健身的青年男性、女性各50名,將其花費(fèi)統(tǒng)計(jì)情況如下表所示:

分組(花費(fèi))

頻數(shù)

6

22

25

35

8

4

男性

女性

合計(jì)

健身花費(fèi)不超過2400

23

健身花費(fèi)超過2400

20

合計(jì)

1)完善二聯(lián)表中的數(shù)據(jù);

2)根據(jù)表中的數(shù)據(jù)情況,判斷是否有99%的把握認(rèn)為健身的花費(fèi)超過2400元與性別有關(guān);

3)求這100名被調(diào)查者一年健身的平均花費(fèi)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值代替).

附:

P(K2k)

0.10

0.05

0.025

0.01

k

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習(xí)冊(cè)答案