分析 (1)f(x)為單調(diào)遞增函數(shù),分析如下:先證明f(x)是定義在R上的奇函數(shù),令x=y=0,可得f(0)=0,
令y=-x,代入可得f(-x)=-f(x),f(x)是定義在R上的奇函數(shù).設(shè)x1<x2,作差并且證明f(x2)-f(x1)>0即可.
(2)由(1)知f(x)在[-1,1]上為單調(diào)遞增函數(shù),可得f(x)在[-1,1]上的最大值為f(1)=1,因此要使f(x)<m2-2am+1對所有x∈[-1,1],a∈[-2,2]恒成立,只要m2-2am+1>1,即m2-2am>0恒成立,利用一次函數(shù)的單調(diào)性即可得出.
解答 解:(1)f(x)為單調(diào)遞增函數(shù),證明如下:
先證明f(x)是定義在R上的奇函數(shù),令x=y=0,則f(0)=f(0)+f(0)⇒f(0)=0,
令y=-x,則f(x)+f(-x)=f(0)=0,∴f(-x)=-f(x),f(x)是定義在R上的奇函數(shù).
設(shè)x1<x2,
則f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1),
當(dāng)x>0時,有f(x)>0,所以f(x2)>f(x1),
故f(x)在R上為單調(diào)遞增函數(shù).
(2)由(1)知f(x)在[-1,1]上為單調(diào)遞增函數(shù),
所以f(x)在[-1,1]上的最大值為f(1)=1,
所以要使f(x)<m2-2am+1對所有x∈[-1,1],a∈[-2,2]恒成立,
只要m2-2am+1>1,即m2-2am>0恒成立,
令g(a)=m2-2am=-2am+m2,則$\left\{{\begin{array}{l}{g(-2)>0}\\{g(2)>0}\end{array}}\right.$即$\left\{{\begin{array}{l}{4m+{m^2}>0}\\{-4m+{m^2}>0}\end{array}}\right.$
解得m>4或m<-4.
故實數(shù)m的取值范圍是m>4或m<-4.
點評 本題考查了抽象函數(shù)的奇偶性與單調(diào)性、不等式的解法、函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | 2π | C. | 3π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-1)2+y2=1 | B. | x2+(y-1)2=1 | C. | (x-2)2+y2=1 | D. | x2+(y-2)2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com