A. | x+$\frac{y}{3}$=1 | B. | $\frac{x}{6}$+$\frac{y}{2}$=1 | C. | $\frac{x}{4}$+$\frac{y}{4}$=1 | D. | $\frac{x}{12}$+$\frac{3y}{4}$=1 |
分析 求出C的坐標(biāo),利用基本不等式,即可求出當(dāng)△OPQ的面積最小時(shí)直線l的方程.
解答 解:直線AB的斜率為-1,
則反射光線所在的直線方程為y=x-2,代入點(diǎn)C得m=3,即C(3,1).
設(shè)直線l的方程為$\frac{x}{a}+\frac{y}$=1(a>0,b>0),
則△OPQ的面積S=$\frac{1}{2}$ab,且$\frac{3}{a}$+$\frac{1}$=1≥2$\sqrt{\frac{3}{ab}}$,即有ab≥12,
當(dāng)且僅當(dāng)$\frac{3}{a}$=$\frac{1}$,即a=6,b=2等號(hào)成立,
此時(shí)△OPQ的面積S取最小值6,直線l的方程為$\frac{x}{6}$+$\frac{y}{2}$=1.
故選B.
點(diǎn)評(píng) 考查用截距式求直線方程的方法,基本不等式的應(yīng)用,正確運(yùn)用基本不等式是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{9}$ | B. | $\frac{4\sqrt{5}}{9}$ | C. | -$\frac{4\sqrt{5}}{9}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | (-∞,-1]∪[1,+∞) | C. | [-$\frac{1}{3}$,$\frac{1}{3}$] | D. | (-∞,-$\frac{1}{3}$]∪[$\frac{1}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1200 | B. | 600 | C. | 450 | D. | 300 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com