分析 (1)把已知方程配方,由5-m>0求得m的取值范圍;
(2)利用圓心到直線的距離等于圓的半徑列式求得m值.
解答 解:(1)由C:x2+y2+2x+4y+m=0,
得(x+1)2+(y+2)2=5-m,
由5-m>0,得m<5.
∴當m<5時,曲線C表示圓;
(2)圓C的圓心坐標為(-1,-2),半徑為$\sqrt{5-m}$.
∵直線l:y=x-m與圓C相切,
∴$\frac{|-1×1+(-1)×(-2)-m|}{\sqrt{2}}=\sqrt{5-m}$,
解得:m=±3,滿足m<5.
∴m=±3.
點評 本題考查圓的一般方程,考查了直線與圓位置關系的應用,訓練了點到直線的距離公式的應用,是基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com