1.已知曲線C:x2+y2+2x+4y+m=0.
(1)當m為何值時,曲線C表示圓?
(2)若直線l:y=x-m與圓C相切,求m的值.

分析 (1)把已知方程配方,由5-m>0求得m的取值范圍;
(2)利用圓心到直線的距離等于圓的半徑列式求得m值.

解答 解:(1)由C:x2+y2+2x+4y+m=0,
得(x+1)2+(y+2)2=5-m,
由5-m>0,得m<5.
∴當m<5時,曲線C表示圓;
(2)圓C的圓心坐標為(-1,-2),半徑為$\sqrt{5-m}$.
∵直線l:y=x-m與圓C相切,
∴$\frac{|-1×1+(-1)×(-2)-m|}{\sqrt{2}}=\sqrt{5-m}$,
解得:m=±3,滿足m<5.
∴m=±3.

點評 本題考查圓的一般方程,考查了直線與圓位置關系的應用,訓練了點到直線的距離公式的應用,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}$loga(ax)•loga(a2x)(x∈[2,8],a>0,且a≠1)的最大值是1,最小值是-$\frac{1}{8}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.比較下列各題中兩個數(shù)學式值的大小
(1)1.7a+1,1.7a;(2)0.9a-1,0.9a;
(3)log0.9(a2+1),log0.9a2;(4)log1.2a2,log1.2(a2-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=lg(x2+2x+a2)的值域為R,則實數(shù)a的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.把下列參數(shù)方程化為普通方程
(1)$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù));
(2)$\left\{\begin{array}{l}{x=sinθ}\\{y=co{s}^{2}θ}\end{array}\right.$(θ為參數(shù),θ∈[0,2π])

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若a∈{4,5,6}且a∈{6,7},則a的值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知f(x)=$\frac{sin(2π-x)•cos(\frac{3}{2}π+x)}{cos(3π-x)•sin(\frac{11}{2}π-x)}$,則f(-$\frac{21π}{4}$)=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在直角坐標系xOy中,半圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+cosφ}\\{y=sinφ}\end{array}}\right.$(φ為參數(shù),0≤φ≤π),以O為極點,x軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求C的極坐標方程;
(Ⅱ)直線l的極坐標方程是$ρ(sinθ+\sqrt{3}cosθ)=5\sqrt{3}$,射線OM:θ=$\frac{π}{3}$與半圓C的交點為O、P,與直線l的交點為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.極坐標方程ρ=2cosθ所表示的曲線是( 。
A.一條直線B.一條拋物線C.一條雙曲線D.一個圓

查看答案和解析>>

同步練習冊答案