分析 根據(jù)函數(shù)的奇偶性求出a的值,求出x<0時f(x)的表達式,從而求出f(-2)的值即可.
解答 解:∵函數(shù)f(x)是奇函數(shù),
∴f(-x)=-f(x),
且x≥0時,f(x)=log2(x+2)+a,
設(shè)x<0,則-x>0,
故f(-x)=${log}_{2}^{(-x+2)}$+a=-f(x),
∴x<0時:f(x)=-${log}_{2}^{(-x+2)}$-a,
而f(0)=1+a=0,故a=-1,
∴f(-2)=-${log}_{2}^{4}$-a=-2+1=-1,
故答案為:-1.
點評 本題考查了函數(shù)的奇偶性問題,考查求函數(shù)的表達式,求函數(shù)值問題,是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${A}_{5}^{5}$${A}_{6}^{4}$-2${A}_{4}^{4}$${A}_{5}^{4}$ | B. | ${A}_{5}^{5}$${A}_{4}^{4}$-${A}_{4}^{4}$${A}_{5}^{4}$ | ||
C. | ${A}_{6}^{5}$${A}_{5}^{4}$-2${A}_{4}^{4}$${A}_{4}^{4}$ | D. | ${A}_{5}^{5}$${A}_{5}^{4}$-${A}_{4}^{4}$${A}_{4}^{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,x2+2x+1<0 | B. | ?x∉R,x2+2x+1<0 | C. | ?x∉R,x2+2x+1<0 | D. | ?x∈R,x2+2x+1<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com