【題目】某廠家擬在2016 年舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費(fèi)用萬元()滿足為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售只能是萬件.已知2016 年生產(chǎn)該產(chǎn)品的固定投入為萬元.每生產(chǎn)萬件該產(chǎn)品需要再投入 萬元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將2016 年該產(chǎn)品的利潤(rùn)萬元表示為年促銷費(fèi)用萬元的函數(shù);
(2)該廠家2016 年的促銷費(fèi)用投入多少萬元時(shí),廠家的利潤(rùn)最大?
【答案】(1);(2).
【解析】
試題分析:(1)首先需要確定的值。根據(jù)題意當(dāng)時(shí),,可求得,從而,再求出每件產(chǎn)品的銷售價(jià)格為,銷售價(jià)格去掉投入即為利潤(rùn);(2)根據(jù)基本不等式求解即可,因?yàn)楸绢}為實(shí)際應(yīng)用題,所以注意變量的范圍.
試題解析:(1)由題意知, 當(dāng)時(shí),( 萬件),,每件產(chǎn)品銷售價(jià)格為(元), 年的利潤(rùn)
.
(2)時(shí),當(dāng)且僅當(dāng)(萬元) 時(shí), (萬元). 故該廠家2016 年的促銷費(fèi)用投入萬元時(shí),廠家的利潤(rùn)最大為萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)在[﹣5,5]上是偶函數(shù),且在[0,5]上是單調(diào)函數(shù),若f(﹣4)<f(﹣2),則下列不等式一定成立的是( )
A.f(﹣1)<f(3)
B.f(2)<f(3)
C.f(﹣3)<f(5)
D.f(0)>f(1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本y(萬元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系式可以近視地表示為,已知此生產(chǎn)線的年產(chǎn)量最大為210噸.
(1)求年產(chǎn)量為多少噸時(shí),生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;
(2)若每噸產(chǎn)品平均出廠價(jià)為40萬元,那么當(dāng)年產(chǎn)量為多少噸時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察以下5個(gè)等式:
-1=-1
-1+3=2
-1+3-5=-3
-1+3-5+7=4
-1+3-5+7-9=-5
……
根據(jù)以上式子規(guī)律:
(1)寫出第6個(gè)等式,并猜想第n個(gè)等式;(n∈N*)
(2)用數(shù)學(xué)歸納法證明上述所猜想的第n個(gè)等式成立.(n∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù),。
(1)若函數(shù)在處的切線與函數(shù)在處的切線互相平行,求實(shí)數(shù)的值;
(2)設(shè)函數(shù)。
(ⅰ)當(dāng)實(shí)數(shù)時(shí),試判斷函數(shù)在上的單調(diào)性;
(ⅱ)如果是的兩個(gè)零點(diǎn),為函數(shù)的導(dǎo)函數(shù),證明:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)若函數(shù)的圖象與軸相鄰兩個(gè)交點(diǎn)間的距離為,且圖像的一條對(duì)稱軸是直線。
(1)求的值;
(2)求函數(shù)的單調(diào)增區(qū)間;
(3)畫出函數(shù)在區(qū)間上的圖像。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品, 其生產(chǎn)的總成本(萬元)與年產(chǎn)量(噸)之間的函數(shù)關(guān)系式可以近似地表示為,已知此生產(chǎn)線年產(chǎn)量最大為噸.
(1)求年產(chǎn)量為多少噸時(shí),生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;
(2)若毎噸產(chǎn)品平均出廠價(jià)為萬元,那么當(dāng)年產(chǎn)量為多少噸時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是村里一個(gè)小湖的一角,其中. 為了給村民營(yíng)造豐富的休閑環(huán)境,村委會(huì)決定在直線湖岸與上分別建觀光長(zhǎng)廊與,其中是寬長(zhǎng)廊,造價(jià)是元/米;是窄長(zhǎng)廊,造價(jià)是元/米;兩段長(zhǎng)廊的總造價(jià)預(yù)算為萬元(恰好都用完);同時(shí),在線段上靠近點(diǎn)的三等分點(diǎn)處建一個(gè)表演舞臺(tái),并建水上通道(表演舞臺(tái)的大小忽略不計(jì)),水上通道的造價(jià)是元/米.
(1)若規(guī)劃寬長(zhǎng)廊與窄長(zhǎng)廊的長(zhǎng)度相等,則水上通道的總造價(jià)需多少萬元?
(2)如何設(shè)計(jì)才能使得水上通道的總造價(jià)最低?最低總造價(jià)是多少萬元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com