已知命題p:“?x∈R,總有x2-x+1>0”的否定是“?x∈R,使得x2-x+1≤0”;命題q:在△ABC中,“A>
π
4
”是“sinA>
2
2
”的必要不充分條件.則有( 。
A、p真q真B、p真q假
C、p假q真D、p假q假
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)全稱命題和特稱命題的概念,全稱命題的否定,正弦函數(shù)在(0,π)上的圖象即可判斷命題p,q的真假,從而找出正確選項(xiàng).
解答: 解:根據(jù)全稱命題的否定是特稱命題即可知命題p是真命題;
由正弦函數(shù)的圖象知道A>
π
4
得不出sinA
2
2
,而sinA
2
2
可得出A
π
4

即A
π
4
是sinA
2
2
的必要不充分條件;
∴命題q為真命題;
∴p真q真.
故選A.
點(diǎn)評:考查特稱命題、全稱命題的概念,全稱命題的否定為特稱命題,以及正弦函數(shù)的圖象,充要條件、必要條件、必要不充分條件的概念.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上面畫點(diǎn)或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):

將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個新數(shù)列{bn},可以推測:
(Ⅰ)b2014是數(shù)列{an}中的第
 
項(xiàng);
(Ⅱ)若n為正偶數(shù),則b1-b3+b5-b7+…+(-1)n-1b2n-1
 
.(用n表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩圓x2+y2+4y=0,x2+y2+2(a-1)x+2y+a2=0在交點(diǎn)處的切線方程互相垂直,那么實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用穿根法的圖象做出h(x)=-3+
1
x2
,指出函數(shù)在區(qū)間
 
>0,區(qū)間
 
<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0,求分別滿足下列條件的a、b的值.
(1)直線l1過點(diǎn)(-3,-1),并且直線l1與直線l2垂直;
(2)直線l1與直線l2平行,并且直線l1直線的傾斜角為135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,∠A=30°,sinB=
3
3
,求cosB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos(2x+m)在定義域[a,b]內(nèi)的值域?yàn)閇-1,
1
2
],則b-a的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=asin(πx+α)+bcos(πx+β)+4,其中a,b,α,β均為非零的常數(shù),f(1988)=3,則f(2008)的值為(  )
A、1B、3C、5D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

tan
6
=( 。
A、-
3
B、
3
3
C、
3
D、-
3
3

查看答案和解析>>

同步練習(xí)冊答案